
Programmer's Guide

ps2000pg.en-12

PC Oscilloscopes

PicoScope® 2000 Series





PicoScope 2000 Series Programmer's Guide Contents

3Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

Contents
1 Introduction ............................................................................................................... 5

1 Overview ............................................................................................................................................. 5

2 Minimum system requirements ........................................................................................................ 5

3 Legal information ............................................................................................................................... 6

4 Trademarks ........................................................................................................................................ 7

5 Warranty .............................................................................................................................................. 7

2 Programming the 2000 Series Oscilloscopes ............................................................ 8

1 General procedure .............................................................................................................................. 8

2 Driver ................................................................................................................................................... 8

3 Voltage ranges ................................................................................................................................... 8

4 Triggering ............................................................................................................................................ 9

5 Signal generator ................................................................................................................................. 9

6 AC/DC coupling .................................................................................................................................. 9

7 Oversampling .................................................................................................................................... 10

3 Sampling modes ...................................................................................................... 11

1 Block mode ...................................................................................................................................... 11

1 Using block mode ................................................................................................................. 11

2 Streaming mode ............................................................................................................................... 13

1 Compatible streaming mode ............................................................................................... 13

2 Fast streaming mode ........................................................................................................... 14

3 ETS (Equivalent Time Sampling) mode .......................................................................................... 15

1 Using ETS mode ................................................................................................................... 15

4 Combining several oscilloscopes ............................................................................. 16

5 API Functions .......................................................................................................... 17

1 ps2000_close_unit ........................................................................................................................... 18

2 ps2000_flash_led .............................................................................................................................. 19

3 ps2000_get_streaming_last_values ................................................................................................ 20

4 ps2000_get_streaming_values ........................................................................................................ 21

5 ps2000_get_streaming_values_no_aggregation ............................................................................. 23

6 ps2000_get_timebase ...................................................................................................................... 25

7 ps2000_get_times_and_values ........................................................................................................ 26

8 ps2000_get_unit_info ....................................................................................................................... 28

9 ps2000_get_values ........................................................................................................................... 29

10 ps2000_last_button_press ............................................................................................................. 30

11 ps2000_open_unit .......................................................................................................................... 31

12 ps2000_open_unit_async ............................................................................................................... 32

13 ps2000_open_unit_progress .......................................................................................................... 33

14 ps2000_overview_buffer_status .................................................................................................... 34

15 ps2000PingUnit .............................................................................................................................. 35



PicoScope 2000 Series Programmer's Guide Contents

4Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

16 ps2000_ready .................................................................................................................................. 36

17 ps2000_run_block .......................................................................................................................... 37

18 ps2000_run_streaming ................................................................................................................... 38

19 ps2000_run_streaming_ns ............................................................................................................. 39

20 ps2000SetAdvTriggerChannelConditions ..................................................................................... 40

1 PS2000_TRIGGER_CONDITIONS structure .......................................................................... 41

21 ps2000SetAdvTriggerChannelDirections ...................................................................................... 42

22 ps2000SetAdvTriggerChannelProperties ...................................................................................... 43

1 PS2000_TRIGGER_CHANNEL_PROPERTIES structure ....................................................... 44

23 ps2000SetAdvTriggerDelay ............................................................................................................ 45

24 ps2000_set_channel ....................................................................................................................... 46

25 ps2000_set_ets .............................................................................................................................. 47

26 ps2000_set_light ............................................................................................................................ 48

27 ps2000_set_led ............................................................................................................................... 49

28 ps2000SetPulseWidthQualifier ...................................................................................................... 50

1 PS2000_PWQ_CONDITIONS structure ................................................................................. 51

29 ps2000_set_sig_gen_arbitrary ....................................................................................................... 52

30 ps2000_set_sig_gen_built_in ......................................................................................................... 54

31 ps2000_set_trigger ......................................................................................................................... 56

32 ps2000_set_trigger2 ....................................................................................................................... 57

33 ps2000_stop ................................................................................................................................... 58

34 my_get_overview_buffers .............................................................................................................. 59

6 Programming examples .......................................................................................... 61

7 Driver error codes .................................................................................................... 62

8 Glossary ................................................................................................................... 63

Index .......................................................................................................................... 65



Introduction

5Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

1 Introduction

1.1 Overview
The PicoScope 2000 Series PC Oscilloscopes are low-cost, high-performance instruments that
are fully USB 2.0-capable and also backwards-compatible with USB 1.1. There is no need for
an additional power supply, as power is taken from the USB port.

This manual explains how to develop your own programs for collecting and analyzing data
from the PicoScope 2000 Series oscilloscopes. This manual describes the application
programming interface (API) for the devices shown below.

PicoScope 2104
PicoScope 2105

PicoScope 2202
PicoScope 2203
PicoScope 2204
PicoScope 2205

PicoScope 2204A
PicoScope 2205A

The Pico Technology software development kit (SDK) is available on the Pico Technology
Software and Reference CD-ROM and for free download from www.picotech.com/downloads.

1.2 Minimum system requirements
To ensure that your PicoScope 2000 Series PC Oscilloscope operates correctly, you must
have a computer with at least the minimum system requirements to run one of the supported
operating systems, as shown in the following table. The performance of the oscilloscope will be
better with a more powerful PC, and will benefit from a multi-core processor.

Please note the PicoScope software is not installed as part of the SDK.

Item Specification

Operating
system

Windows 7, Windows 8, Windows 10

32 bit and 64 bit versions supported

Processor
As required by the operating systemMemory

Free disk space

Ports USB 1.1 compliant port (absolute minimum)*
USB 2.0 or USB 3.0 compliant port

* The oscilloscope will run slowly on a USB 1.1 port. This configuration is not recommended.

https://www.picotech.com/downloads


Introduction

6Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

1.3 Legal information
The material contained in this release is licensed, not sold. Pico Technology Limited grants a
license to the person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been
informed of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico Technology products or with data
collected using Pico Technology products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all material
(software, documents, etc.) contained in this SDK except the example programs. You may
copy and distribute the SDK without restriction, as long as you do not remove any Pico
Technology copyright statements. The example programs in the SDK may be modified, copied
and distributed for the purpose of developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury,
howsoever caused, related to the use of Pico Technology equipment or software, unless
excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee
that its equipment or software is suitable for a given application. It is your responsibility,
therefore, to ensure that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be
running other software products. For this reason, one of the conditions of the license is that it
excludes use in mission-critical applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are
responsible for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our
technical support staff, who will try to fix the problem within a reasonable time. If you are still
dissatisfied, please return the product and software to your supplier within 14 days of
purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We
reserve the right to charge for updates or replacements sent out on physical media.



Introduction

7Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

1.4 Trademarks
Pico Technology Limited and PicoScope are trademarks of Pico Technology Limited,
registered in the United Kingdom and other countries. 

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.

1.5 Warranty
Pico Technology warrants upon delivery, and for a period of 5 years unless otherwise stated
from the date of delivery, that the Goods will be free from defects in material and
workmanship.

Pico Technology shall not be liable for a breach of the warranty if the defect has been caused
by fair wear and tear, willful damage, negligence, abnormal working conditions or failure to
follow Pico Technology's spoken or written advice on the storage, installation, commissioning,
use or maintenance of the Goods or (if no advice has been given) good trade practice; or if
the Customer alters or repairs such Goods without the written consent of Pico Technology.



Programming the 2000 Series Oscilloscopes

8Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

2 Programming the 2000 Series
Oscilloscopes

2.1 General procedure
The ps2000.dll library in your PicoScope installation directory allows you to program a

PicoScope 2000 Series oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

Open the oscilloscope.
Set up the input channels with the required voltage ranges and coupling mode.
Set up triggering.
Start capturing data. (See Sampling modes, where programming is discussed in more
detail.)
Wait until the oscilloscope is ready.
Copy data to a buffer.
Stop capturing data.
Close the oscilloscope.

Numerous sample programs are included in the SDK. These show how to use the functions of
the driver software in each of the modes available.

2.2 Driver
Your application will communicate with a PicoScope 2000 API driver called ps2000.dll, which

is supplied in 32-bit and 64-bit versions. The driver exports the ps2000 function definitions in
standard C format, but this does not limit you to programming in C. You can use the API with
any programming language that supports standard C calls.

The API driver depends on a low-level driver called WinUsb.sys (supplied in 32-bit and 64-bit

versions), which is installed by the SDK and configured when you plug the oscilloscope into
each USB port for the first time. Your application does not call this driver directly.

2.3 Voltage ranges
You can set the gain for each channel with the ps2000_set_channel function. The input

voltage ranges available depend on the oscilloscope model.

The driver scales all readings to 16 bits, regardless of the voltage range the oscilloscope is set
to. The following table shows the relationship between the reading from the driver and the
signal level.

Constant Reading Voltage

decimal hex

PS2000_LOST_DATA -32 768 8000 Indicates a buffer overrun in fast streaming
mode.

PS2000_MIN_VALUE -32 767 8001 Negative full scale

0 0 0000 Zero volts

PS2000_MAX_VALUE 32 767 7FFF Positive full scale



Programming the 2000 Series Oscilloscopes

9Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Example

1. Call
ps2000_set_channel
with range set to

PS2000_1V.

2. Apply a sine wave input of
500 mV amplitude to the
oscilloscope.

3. Capture some data using
the desired sampling
mode.

4. The data will be encoded
as shown opposite.

2.4 Triggering
PicoScope 2000 Series PC Oscilloscopes can either start collecting data immediately, or be
programmed to wait for a trigger event to occur. In both cases you need to use the
ps2000_set_trigger function or, for scopes that support advanced triggering, the

ps2000SetAdvTriggerChannelConditions and related functions. A trigger event can

occur on any of the conditions available in the simple and advanced triggering modes.

Applicability Available in block mode and fast streaming mode only. Calls to the
ps2000_set_trigger and

ps2000SetAdvTriggerChannelConditions functions have no effect in

compatible streaming mode.

The triggering methods available for your oscilloscope are listed in the data sheet. Where
available, the pulse width, delay and drop-out triggering methods additionally require the use of
the pulse width qualifier function, ps2000SetPulseWidthQualifier.

2.5 Signal generator
The PicoScope 2203, 2204(A) and 2205(A) PC Oscilloscopes have a built-in signal
generator, which is set up using ps2000_set_sig_gen_built_in. You can also use this

signal generator to output arbitrary waveforms, using ps2000_set_sig_gen_arbitrary.

Applicability PicoScope 2203, 2204(A) and 2205(A) oscilloscopes only.

2.6 AC/DC coupling
Using the ps2000_set_channel function, each channel can be set to either AC or DC

coupling. When AC coupling is used, any component of the signal below about 1 Hz is filtered
out.



Programming the 2000 Series Oscilloscopes

10Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

2.7 Oversampling
When the oscilloscope is operating at sampling rates less than the maximum, it is possible to
oversample. Oversampling is taking more than one measurement during a time interval and
returning an average. If the signal contains a small amount of noise, this technique can
increase the effective vertical resolution of the oscilloscope by the amount given by the
equation below:

Increase in resolution (bits) = (log oversample) / (log 4)

Applicability Available in block mode only.



Sampling modes

11Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

3 Sampling modes
PicoScope 2000 Series PC Oscilloscopes can run in various sampling modes.

Block mode. At the highest sampling rates, the oscilloscope collects data much faster than
a PC can read it. In this case, the oscilloscope stores a block of data in an internal memory
buffer, delaying transfer to the PC until the required number of data points have been
sampled. 

ETS mode. In this mode, it is possible to increase the effective sampling rate of the scope
when capturing repetitive signals. It is a modified form of block mode.

Streaming modes. At all but the highest sampling rates, these modes allow accurately
timed data to be transferred back to the PC without gaps. The computer instructs the
oscilloscope to start collecting data. The oscilloscope then transfers data back to the PC
without storing it in its own memory, so the size of the data set is limited only by the size
of the PC's memory. Sampling intervals from less than one microsecond (depending on
model) to 60 seconds are possible. There are two streaming modes:

· Compatible streaming mode

· Fast streaming mode

3.1 Block mode
In block mode, the computer prompts the oscilloscope to collect a block of data in its internal
memory. When the oscilloscope has collected the whole block, it signals that it is ready and
then transfers the whole block to the computer's memory through the USB port. 

The maximum number of values depends upon the size of the oscilloscope's memory. A
PicoScope 2000 Series oscilloscope can sample at a number of different rates that correspond
to the maximum sampling rate divided by 1, 2, 4, 8 and so on. 

There is a separate memory buffer for each channel. When a channel is unused, its memory
can be borrowed by the enabled channels. This feature is handled transparently by the driver.

The driver normally performs a number of setup operations before collecting each block of
data. This can take up to 50 milliseconds. If it is necessary to collect data with the minimum
time interval between blocks, avoid calling setup functions between calls to
ps2000_run_block, ps2000_ready, ps2000_stop and ps2000_get_values.

See Using block mode for programming details.

3.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode:

1. Open the oscilloscope using ps2000_open_unit.

2. Select channel ranges and AC/DC coupling using ps2000_set_channel.

3. Using ps2000_set_trigger, set the trigger if required.

4. Using ps2000_get_timebase, select timebases until you locate the required time

interval per sample.
5. Start the oscilloscope running using ps2000_run_block.

6. Poll the driver to find out if the oscilloscope has finished collecting data, using
ps2000_ready.



Sampling modes

12Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

7. Transfer the block of data from the oscilloscope using ps2000_get_values or

ps2000_get_times_and_values.

8. Display the data.
9. Repeat steps 5 to 8.
10. Stop the oscilloscope using ps2000_stop.

11. Close the device using ps2000_close_unit.

Note that if you call ps2000_get_values, ps2000_get_times_and_values or

ps2000_stop before the oscilloscope is ready, no capture will be available and the driver will

not return any samples.



Sampling modes

13Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

3.2 Streaming mode
Streaming mode is an alternative to block mode that can capture data without gaps between
blocks.

In streaming mode, the computer prompts the oscilloscope to start collecting data. The data is
then transferred back to the PC without being stored in the oscilloscope's memory. Data can
be sampled with a period between 1 µs or less and 60 s, and the maximum number of
samples is limited only by the amount of free space on the PC's hard disk.

There are two varieties of streaming mode:

Compatible streaming mode
Fast streaming mode

3.2.1 Compatible streaming mode

Compatible streaming mode is a basic streaming mode that works at speeds from one
sample per minute to a thousand samples per second.

The oscilloscope's driver transfers data to a computer program using either normal or
windowed mode. In normal mode, any data collected since the last data transfer operation is
returned in its entirety. Normal mode is useful if the computer program requires fresh data on
every transfer. In windowed mode, a fixed number of samples is returned, where the oldest
samples may have already been returned before. Windowed mode is useful when the program
requires a constant time period of data. 

Once the oscilloscope is collecting data in compatible streaming mode, any setup changes (for
example, changing a channel range or AC/DC setting) will cause a restart of the data stream.
The driver can buffer up to 32 kilosamples of data per channel, but the user must ensure that
the ps2000_get_values function is called frequently enough to avoid buffer overrun. 

For streaming with the PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A variants, we
recommend you use fast streaming mode instead.

Applicability Only recommended for use with PicoScope 2104 and 2105.

Does not support triggering.

The ps2000_get_times_and_values function always returns FALSE (0)

in streaming mode.

See Using compatible streaming mode for programming details.

3.2.1.1 Using compatible streaming mode

This is the general procedure for reading and displaying data in compatible streaming mode:

1. Open the oscilloscope using ps2000_open_unit.

2. Select channel ranges and AC/DC coupling using ps2000_set_channel.

3. Start the oscilloscope running using ps2000_run_streaming.

4. Transfer the block of data from the oscilloscope using ps2000_get_values.

5. Display the data.
6. Repeat steps 4 and 5 as necessary.
7. Stop the oscilloscope using ps2000_stop.



Sampling modes

14Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

8. Close the device using ps2000_close_unit.

3.2.2 Fast streaming mode

Fast streaming mode is an advanced streaming mode that can transfer data at speeds of a
million samples per second or more, depending on the computer's performance. This makes it
suitable for high-speed data acquisition, allowing you to capture very long data sets limited
only by the computer's memory.

Fast streaming mode also provides data aggregation, which allows your application to zoom in
and out of the data with the minimum of effort.

Applicability PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A only.

Works with triggering.

See Using fast streaming mode for programming details.

3.2.2.1 Using fast streaming mode

This is the general procedure for reading and displaying data in fast streaming mode:

1. Open the oscilloscope using ps2000_open_unit.

2. Select channel ranges and AC/DC coupling using ps2000_set_channel.

3. Set the trigger using ps2000_set_trigger.

4. Start the oscilloscope running using ps2000_run_streaming_ns.

5. Get a block of data from the oscilloscope using
ps2000_get_streaming_last_values.

6. Display or process the data.
7. If required, check for overview buffer overruns by calling

ps2000_overview_buffer_status.

8. Repeat steps 5 to 7 as necessary or until auto_stop is TRUE.
9. Stop fast streaming using ps2000_stop.

10. Retrieve any part of the data at any time scale by calling
ps2000_get_streaming_values.

11. If you require raw data, retrieve it by calling
ps2000_get_streaming_values_no_aggregation.

12. Repeat steps 10 to 11 as necessary.
13. Close the oscilloscope by calling ps2000_close_unit.



Sampling modes

15Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

3.3 ETS (Equivalent Time Sampling) mode
ETS is a way of increasing the effective sampling rate when working with repetitive signals. It
is controlled by the ps2000_set_trigger and ps2000_set_ets functions.

ETS works by capturing many instances of a repetitive waveform, then combining them to
produce a composite waveform that has a higher effective sampling rate than the individual
instances. The maximum effective sampling rates that can be achieved with this method are
listed in the data sheet specifications for your oscilloscope.

Because of the high sensitivity of ETS mode to small time differences, you must set up the
trigger to provide a stable waveform that varies as little as possible from one capture to the
next.

Applicability Block mode only.

PicoScope 2104, 2105, 2203, 2204, 2204A, 2205 and 2205A
oscilloscopes.

As ETS returns random time intervals, the
ps2000_get_times_and_values function must be used. The

ps2000_get_values function will return FALSE (0).

Stable, repetitive signals only.

3.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode:

1. Open the oscilloscope using ps2000_open_unit.

2. Select channel ranges and AC/DC coupling using ps2000_set_channel.
3. Using ps2000_set_trigger, set the trigger if required.

4. Set ETS mode using ps2000_set_ets.

5. Start the oscilloscope running using ps2000_run_block.

6. Poll the driver to find out when the oscilloscope has finished collecting data, using
ps2000_ready.

7. Transfer the block of data from the oscilloscope using
ps2000_get_times_and_values.

8. Display the data.
9. Repeat steps 6 to 8 as necessary.
10. Stop the oscilloscope using ps2000_stop.

11. Close the device using ps2000_close_unit.

Note that if you call ps2000_get_values, ps2000_get_times_and_values or

ps2000_stop before the oscilloscope is ready, no capture will be available and the driver will

not return any samples.



Combining several oscilloscopes

16Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

4 Combining several oscilloscopes
The 2000 Series driver can collect data from up to 64 PicoScope 2000 Series PC oscilloscopes
at the same time. Each oscilloscope must be connected to a separate USB port. If you use a
USB hub, make sure it is a powered hub.

To begin, call ps2000_open_unit to obtain a handle for each oscilloscope. All the other

functions require this handle for oscilloscope identification. For example, to collect data from
two oscilloscopes at the same time:

handle1 = ps2000_open_unit()
handle2 = ps2000_open_unit()

ps2000_set_channel(handle1)
... set up unit 1
ps2000_run_block(handle1)

ps2000_set_channel(handle2)
... set up unit 2
ps2000_run_block(handle2)

ready = FALSE
while not ready

ready = ps2000_ready(handle1)
ready &= ps2000_ready(handle2)

ps2000_get_values(handle1)
ps2000_get_values(handle2)

ps2000_close_unit(handle1)
ps2000_close_unit(handle2)

It is not possible to synchronize the collection of data between oscilloscopes that are being
used in combination.



API Functions

17Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5 API Functions
The PicoScope 2000 Series API exports the following functions for you to use in your own
applications:

ps2000_close_unit
ps2000_flash_led
ps2000_get_streaming_last_values
ps2000_get_streaming_values
ps2000_get_streaming_values_no_aggregation
ps2000_get_timebase
ps2000_get_times_and_values
ps2000_get_unit_info
ps2000_get_values
ps2000_last_button_press
ps2000_open_unit
ps2000_open_unit_async
ps2000_open_unit_progress
ps2000_overview_buffer_status
ps2000PingUnit
ps2000_ready
ps2000_run_block
ps2000_run_streaming
ps2000_run_streaming_ns
ps2000SetAdvTriggerChannelConditions
ps2000SetAdvTriggerChannelDirections
ps2000SetAdvTriggerChannelProperties
ps2000SetAdvTriggerDelay
ps2000_set_channel
ps2000_set_ets
ps2000_set_led
ps2000_set_light
ps2000SetPulseWidthQualifier
ps2000_set_sig_gen_arbitrary
ps2000_set_sig_gen_built_in
ps2000_set_trigger
ps2000_set_trigger2
ps2000_stop

The following user-defined function is also described here:

my_get_overview_buffers



API Functions

18Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.1 ps2000_close_unit
int16_t ps2000_close_unit
(

int16_t    handle
)

Shuts down a PicoScope 2000 Series oscilloscope.

Applicability All modes

Arguments handle: the handle, returned by ps2000_open_unit, of the oscilloscope

being closed

Returns non-zero: if a valid handle is passed

0: if handle is not valid



API Functions

19Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.2 ps2000_flash_led
int16_t ps2000_flash_led
(

int16_t    handle 
)

Flashes the LED on the front of the oscilloscope (or in the pushbutton, for the PicoScope 2104
and 2105 oscilloscopes) three times and returns within one second.

Applicability All modes

Arguments handle: the handle of the PicoScope 2000 Series oscilloscope

Returns non-zero: if a valid handle is passed

0: if handle is invalid



API Functions

20Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.3 ps2000_get_streaming_last_values
int16_t ps2000_get_streaming_last_values
(

int16_t                     handle
GetOverviewBuffersMaxMin    lpGetOverviewBuffersMaxMin 

)

This function is used to collect the next block of values while fast streaming is running. You
must call ps2000_run_streaming_ns beforehand to set up fast streaming.

Applicability Fast streaming mode only

PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A only

Not compatible with ETS triggering. Function has no effect in ETS mode.

Arguments handle: the handle of the required oscilloscope

lpGetOverviewBuffersMaxMin: a pointer to the

my_get_overview_buffers callback function in your application that

receives data from the streaming driver

Returns 1: if the callback will be called

0: if the callback will not be called, either because one of the inputs is out of
range or because there are no samples available



API Functions

21Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.4 ps2000_get_streaming_values
uint32_t ps2000_get_streaming_values
(

int16_t     handle,
double      *start_time,
int16_t     *pbuffer_a_max,
int16_t     *pbuffer_a_min,
int16_t     *pbuffer_b_max,
int16_t     *pbuffer_b_min,
int16_t     *pbuffer_c_max,
int16_t     *pbuffer_c_min,
int16_t     *pbuffer_d_max,
int16_t     *pbuffer_d_min,
int16_t     *overflow,
uint32_t    *triggerAt,
int16_t     *triggered,
uint32_t    no_of_values,
uint32_t    noOfSamplesPerAggregate 

)

This function is used after the driver has finished collecting data in fast streaming mode. It
allows you to retrieve data with different aggregation ratios, and thus zoom in to and out of
any region of the data.

Before calling this function, first capture some data in fast streaming mode, stop fast
streaming by calling ps2000_stop, then allocate sufficient buffer space to receive the

requested data. The function will store the data in your buffer with values in the range
PS2000_MIN_VALUE to PS2000_MAX_VALUE. The special value PS2000_LOST_DATA is

stored in the buffer when data could not be collected because of a buffer overrun. (See
Voltage ranges for more on data values.)

Each sample of aggregated data is created by processing a block of raw samples. The
aggregated sample is stored as a pair of values: the minimum and the maximum values of the
block.



API Functions

22Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Applicability Fast streaming mode only

PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A only

Not compatible with ETS triggering - function has no effect in ETS mode

Arguments handle: the handle of the required oscilloscope

start_time: the time in nanoseconds, relative to the trigger point, of the

first data sample required

pbuffer_a_max, pbuffer_a_min: pointers to two buffers into which

the function will write the maximum and minimum aggregated sample
values from channel A

pbuffer_b_max, pbuffer_b_min: as above but for channel B (two-

channel scopes only)

pbuffer_c_max, pbuffer_c_min, pbuffer_d_max,
pbuffer_d_min: not used

overflow: on exit, the function writes a bit field here indicating whether the

voltage on each of the input channels has overflowed:

Bit 0: Ch A overflow
Bit 1: Ch B overflow

triggerAt: on exit, the function writes an index value here. This is the

offset, from the start of the buffer, of the sample at the trigger reference
point. It is valid only when triggered is TRUE.

triggered: a pointer to a Boolean indicating that a trigger has occurred

and triggerAt is valid

no_of_values: the number of values required

noOfSamplesPerAggregate: the number of samples that the driver

should combine to form each aggregated value pair. The pair consists of the
maximum and minimum values of all the samples that were aggregated. For
channel A, the minimum value is stored in the buffer pointed to by
pbuffer_a_min and the maximum value in the buffer pointed to by

pbuffer_a_max.

Returns The number of values written to each buffer, if successful

0: if a parameter was out of range



API Functions

23Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.5 ps2000_get_streaming_values_no_aggregation
uint32_t ps2000_get_streaming_values_no_aggregation
(

int16_t     handle,
double      *start_time,
int16_t     *pbuffer_a,
int16_t     *pbuffer_b,
int16_t     *pbuffer_c,
int16_t     *pbuffer_d,
int16_t     *overflow,
uint32_t    *triggerAt,
int16_t     *trigger,
uint32_t    no_of_values 

)

This function retrieves raw streaming data from the driver's data store after fast streaming
has stopped.

Before calling the function, capture some data using fast streaming, stop streaming using
ps2000_stop, and then allocate sufficient buffer space to receive the requested data. The

function will store the data in your buffer with values in the range PS2000_MIN_VALUE to

PS2000_MAX_VALUE. The special value PS2000_LOST_DATA is stored in the buffer when data

could not be collected because of a buffer overrun. (See Voltage ranges for more details of
data values.)



API Functions

24Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Applicability Fast streaming mode only

PicoScope 2203, 2204, 2204A, 2205 and 2205A only

Not compatible with ETS triggering - has no effect in ETS mode

Arguments handle: the handle of the required oscilloscope

start_time: the time in nanoseconds of the first data sample required

pbuffer_a, pbuffer_b: pointers to buffers into which the function will

write the raw sample values from channels A (all scopes) and B (two-
channel scopes only)

pbuffer_c, pbuffer_d: not used

overflow: on exit, the function will write a bit field here indicating whether

the voltage on each of the input channels has overflowed. Bit 0 is the LSB.
The bit assignments are as follows:

Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

triggerAt: on exit, the function writes an index into the buffers here. The

index is the number of the sample at the trigger reference point. It is valid
only when trigger is TRUE.

trigger: on exit, the function writes a Boolean here indicating that a

trigger has occurred and triggerAt is valid

no_of_values: the number of values required

Returns The number of values written to each buffer, if successful

0: if a parameter was out of range



API Functions

25Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.6 ps2000_get_timebase
int16_t ps2000_get_timebase
(

int16_t    handle, 
int16_t    timebase, 
int32_t    no_of_samples, 
int32_t    *time_interval, 
int16_t    *time_units, 
int16_t    oversample, 
int32_t    *max_samples 

)

This function discovers which timebases are available on the oscilloscope. You should set up
the channels using ps2000_set_channel and, if required, ETS mode using

ps2000_set_ets first. Then call this function with increasing values of timebase, starting

from 0, until you find a timebase with a sampling interval and sample count close enough to
your requirements.

Applicability All modes

Arguments handle: the handle of the required oscilloscope

timebase: a code between 0 and the maximum timebase (depending on

the oscilloscope). Timebase 0 is the fastest timebase. Each successive
timebase has twice the sampling interval of the previous one.

no_of_samples: the number of samples that you require. The function

uses this value to calculate the most suitable time unit to use.

time_interval: on exit, this location will contain the time interval, in

nanoseconds, between readings at the selected timebase. If
time_interval is NULL, the function will write nothing.

time_units: on exit, this location will contain an enumerated type

indicating the most suitable unit for expressing sample times. You should
pass this value to ps2000_get_times_and_values. If time_units is

null, the function will write nothing.

oversample: the amount of oversample required. For example, an

oversample of 4 results in a time_interval 4 times larger and a

max_samples 4 times smaller. At the same time it increases the effective

resolution by one bit. See Oversampling for more details. 

max_samples: on exit, the maximum number of samples available. The

scope allocates a certain amount of memory for internal overheads and this
may vary depending on the number of channels enabled, the timebase
chosen and the oversample multiplier selected. If max_samples is NULL,

the function will write nothing.

Returns non-zero: if all parameters are in range

0: on error



API Functions

26Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.7 ps2000_get_times_and_values
int32_t ps2000_get_times_and_values
(

int16_t    handle
int32_t    *times, 
int16_t    *buffer_a,
int16_t    *buffer_b,
int16_t    *buffer_c,
int16_t    *buffer_d,
int16_t    *overflow,
int16_t    time_units,
int32_t    no_of_values 

)

This function is used to get values and times in block mode after calling ps2000_run_block.

Note that if you are using block mode or ETS mode and call this function before the
oscilloscope is ready, no capture will be available and the driver will not return any samples.



API Functions

27Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Applicability Block mode only. It will not return any valid times if the oscilloscope is in
streaming mode.

Essential for ETS operation

Arguments handle: the handle of the required oscilloscope

times: a pointer to a buffer for the sample times in time_units. Each

time is the interval between the trigger event and the corresponding
sample. Times before the trigger event are negative, and times after the
trigger event are positive.

buffer_a, buffer_b: pointers to buffers that receive data from the

channels A and B. A pointer will not be used if the oscilloscope is not
collecting data from that channel. If a pointer is NULL, nothing will be written
to it.

buffer_c, buffer_d: not used

overflow: a bit pattern indicating whether an overflow has occurred and, if

so, on which channel. Bit 0 is the LSB. The bit assignments are as follows:
Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

time_units: can be one of the following:

PS2000_FS (0), femtoseconds,

PS2000_PS (1), picoseconds,

PS2000_NS (2), nanoseconds [default]

PS2000_US (3), microseconds,

PS2000_MS (4), milliseconds,

PS2000_S (5), seconds

no_of_values: the number of data points to return. In streaming mode,

this is the maximum number of values to return.

Returns The actual number of data values per channel returned, which may be less
than no_of_values if streaming

0: if one or more of the parameters are out of range, if the times will
overflow with the time_units requested (use ps2000_get_timebase to
acquire the most suitable time_units) or if the oscilloscope is in streaming
mode



API Functions

28Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.8 ps2000_get_unit_info
int16_t ps2000_get_unit_info
(

int16_t    handle, 
int8_t     *string,
int16_t    string_length,
int16_t    line 

)

This function writes oscilloscope information to a character string. If the oscilloscope failed to
open, only line types 0 and 6 are available to explain why the last open unit call failed. 

Applicability All modes

Arguments handle: the handle of the oscilloscope from which information is required.

If an invalid handle is passed, the error code from the last oscilloscope that
failed to open is returned.

string: a pointer to the character string buffer in the calling function where

the function will write the oscilloscope information string selected with line.

If string is NULL, no information will be written.

string_length: the length of the character string buffer. If the string is

not long enough to accept all of the information, only the first
string_length characters are returned.

line: a value selected from enumerated type PS2000_INFO (see table

below) specifying what information is required from the driver

Returns The length of the string written to the string buffer

0: if one of the parameters is out of range or string is NULL

PS2000_INFO value Example

PS2000_DRIVER_VERSION (0), the version number of the DLL

used by the oscilloscope driver.

"1, 0, 0, 2"

PS2000_USB_VERSION (1), the type of USB connection that is

being used to connect the oscilloscope to the computer.

"1.1" or "2.0"

PS2000_HARDWARE_VERSION (2), the hardware version of the

attached oscilloscope.

"1"

PS2000_VARIANT_INFO (3), the variant of PicoScope 2000 PC

Oscilloscope that is attached to the computer.

"2203"

PS2000_BATCH_AND_SERIAL (4), the batch and serial number of

the oscilloscope.

"CMY66/052"

PS2000_CAL_DATE (5), the calibration date of the oscilloscope. "14Jan08"

PS2000_ERROR_CODE (6), one of the Error codes. "4"

PS2000_KERNEL_DRIVER_VERSION (7), the version number of the

kernel driver.

"1,1,2,4"



API Functions

29Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.9 ps2000_get_values
int32_t ps2000_get_values
(

int16_t    handle
int16_t    *buffer_a,
int16_t    *buffer_b,
int16_t    *buffer_c,
int16_t    *buffer_d,
int16_t    *overflow,
int32_t    no_of_values

)

This function is used to get values in compatible streaming mode after calling
ps2000_run_streaming, or in block mode after calling ps2000_run_block.

Note that if you are using block mode or ETS mode and call this function before the
oscilloscope is ready, no capture will be available and the driver will not return any samples.

Applicability Compatible streaming mode and block mode only

Does nothing if ETS triggering is enabled. Use
ps2000_get_times_and_values instead.

Do not use in fast streaming mode. Use
ps2000_get_streaming_last_values instead.

Arguments handle: the handle of the required oscilloscope

buffer_a, buffer_b: pointers to the buffers that receive data from the

specified channels (A and B). A pointer is not used if the oscilloscope is not
collecting data from that channel. If a pointer is NULL, nothing will be written
to it.

buffer_c, buffer_d: not used

overflow: on exit, contains a bit pattern indicating whether an overflow

has occurred and, if so, on which channel. Bit 0 is the least significant bit.
The bit assignments are as follows:

Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

no_of_values: the number of data points to return. In streaming mode,

this is the maximum number of values to return.

Returns The actual number of data values per channel returned, which may be less
than no_of_values if streaming

0: if one of the parameters is out of range or the oscilloscope is not in a
suitable mode



API Functions

30Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.10 ps2000_last_button_press
int16_t ps2000_last_button_press
( 

int16_t    handle
)

This function returns the last registered state of the pushbutton on the PicoScope 2104 or
2105 PC Oscilloscope and then resets the status to zero.

Applicability PicoScope 2104 and 2105 only

Arguments handle: handle of the oscilloscope

Returns 0: no button press registered

1: short button press registered

2: long button press registered



API Functions

31Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.11 ps2000_open_unit
int16_t ps2000_open_unit
(

void
)

This function opens a PicoScope 2000 Series oscilloscope. The driver can support up to 64
oscilloscopes.

Applicability All modes

Arguments None

Returns -1: if the oscilloscope fails to open

0: if no oscilloscope is found

>0 (oscilloscope handle): if the oscilloscope opened. Use this as the handle
argument for all subsequent API calls for this oscilloscope.



API Functions

32Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.12 ps2000_open_unit_async
int16_t ps2000_open_unit_async
( 

void
)

This function opens a PicoScope 2000 Series oscilloscope without waiting for the operation to
finish. You can find out when it has finished by periodically calling
ps2000_open_unit_progress until that function returns a non-zero value and a valid

oscilloscope handle.

The driver can support up to 64 oscilloscopes.

Applicability All modes

Arguments None

Returns 0: if there is a previous open operation in progress

non-zero: if the call has successfully initiated an open operation



API Functions

33Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.13 ps2000_open_unit_progress
int16_t ps2000_open_unit_progress
( 

int16_t    *handle,
int16_t    *progress_percent

)

This function checks on the progress of ps2000_open_unit_async.

Applicability All modes

Use only with ps2000_open_unit_async

Arguments handle: a pointer to where the function should store the handle of the

opened oscilloscope

0 if no oscilloscope is found or the oscilloscope fails to open,

handle of oscilloscope (valid only if function returns 1)

progress_percent: a pointer to an estimate of the progress towards

opening the oscilloscope. The function will write a value from 0 to 100,
where 100 implies that the operation is complete.

Returns >0: if the driver successfully opens the oscilloscope

0: if opening still in progress

-1: if the oscilloscope failed to open or was not found



API Functions

34Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.14 ps2000_overview_buffer_status
int16_t ps2000_overview_buffer_status
(

int16_t    handle,
int16_t    *previous_buffer_overrun 

)

This function indicates whether or not the overview buffers used by
ps2000_run_streaming_ns have overrun. If an overrun occurs, you can choose to

increase the overview_buffer_size argument that you pass in the next call to

ps2000_run_streaming_ns.

Applicability Fast streaming mode only

PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A only

Not compatible with ETS triggering - function has no effect in ETS mode

Arguments handle: the handle of the required oscilloscope

previous_buffer_overrun: a pointer to a Boolean indicating whether

the overview buffers have overrun. The function will write a non-zero value
to indicate a buffer overrun.

Returns 0: if the function was successful

1: if the function failed due to an invalid handle



API Functions

35Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.15 ps2000PingUnit
int16_t ps2000PingUnit
(

int16_t    handle
)

This function can be used to check that the already opened device is still connected to the USB
port and communication is successful.

Applicability All modes

Arguments handle: the handle of the required device

Returns 0 if function fails: call ps2000_get_unit_info for further information

Any non-zero value: communication successful



API Functions

36Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.16 ps2000_ready
int16_t ps2000_ready
( 

int16_t    handle
)

This function polls the driver to see if the oscilloscope has finished the last data collection
operation. 

Applicability Block mode only. Does nothing if the oscilloscope is in streaming mode.

Arguments handle: the handle of the required oscilloscope

Returns >0: if ready. The oscilloscope has collected a complete block of data or the
auto trigger timeout has been reached. 

0: if not ready. An invalid handle was passed, or the oscilloscope is in
streaming mode, or the oscilloscope is still collecting data in block mode.

-1: if the oscilloscope is not attached. The USB transfer failed, indicating that
the oscilloscope may have been unplugged.



API Functions

37Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.17 ps2000_run_block
int16_t ps2000_run_block
(

int16_t    handle,
int32_t    no_of_samples,
int16_t    timebase,
int16_t    oversample, 
int32_t    *time_indisposed_ms 

)

This function tells the oscilloscope to start collecting data in block mode.

Applicability Block mode only.

Arguments handle: the oscilloscope of the required oscilloscope

no_of_samples: the number of samples to return

timebase: a code between 0 and the maximum timebase available

(consult the driver header file). Timebase 0 gives the maximum sample rate
available, timebase 1 selects a sample rate half as fast, timebase 2 is half as
fast again and so on. For the maximum sample rate, see the specifications
for your oscilloscope. The number of channels enabled may affect the
availability of the fastest timebases.

oversample: the oversampling factor, a number between 1 and 256. See

Oversampling for details.

time_indisposed_ms: a pointer to the approximate time, in milliseconds,

that the ADC will take to collect data. If a trigger is set, it is the amount of
time the ADC takes to collect a block of data after a trigger event,
calculated as (sample interval) x (number of points required). The actual
time may differ from computer to computer, depending on how quickly the
computer can respond to I/O requests.

Returns 0: if one of the parameters is out of range

non-zero: if successful



API Functions

38Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.18 ps2000_run_streaming
int16_t ps2000_run_streaming
(

int16_t    handle,
int16_t    sample_interval_ms,
int32_t    max_samples,
int16_t    windowed 

)

This function tells the oscilloscope to start collecting data in compatible streaming mode. If this
function is called when a trigger has been enabled, the trigger settings will be ignored.

For streaming with the PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A variants, we
recommend you use ps2000_run_streaming_ns instead: this will allow much faster data

transfer.

Applicability Only recommended for use with PicoScope 2104 and 2105

Arguments handle: the handle of the required oscilloscope

sample_interval_ms: the time interval, in milliseconds, between data

points. This can be no shorter than 1 ms.

max_samples: the maximum number of samples that the driver is to

store. This can be no greater than 60 000. It is the application's
responsibility to retrieve data before the oldest values are overwritten.

windowed: if this is 0, only the values taken since the last call to

ps2000_get_values are returned. If this is 1, the number of values

requested by ps2000_get_values are returned, even if they have already

been read by ps2000_get_values.

Returns non-zero: if streaming has been enabled correctly

0: if a problem occurred or a value was out of range



API Functions

39Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.19 ps2000_run_streaming_ns
int16_t ps2000_run_streaming_ns
(

int16_t              handle,
uint32_t             sample_interval,
PS2000_TIME_UNITS    time_units,
uint32_t             max_samples,
int16_t              auto_stop,
uint32_t             noOfSamplesPerAggregate,
uint32_t             overview_buffer_size 

)

This function tells the oscilloscope to start collecting data in fast streaming mode. It returns
immediately without waiting for data to be captured. After calling it, you should next call
ps2000_get_streaming_last_values to copy the data to your application's buffer.

Applicability PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A only

Arguments handle: the handle of the required oscilloscope

sample_interval: the time interval, in time_units, between data

points

time_units: the units in which sample_interval is measured

max_samples: the maximum number of samples that the driver should

store from each channel. Your computer must have enough physical
memory for this many samples, multiplied by the number of channels in use,
multiplied by the number of bytes per sample.

auto_stop: a Boolean to indicate whether streaming should stop

automatically when max_samples is reached. Set to any non-zero value

for TRUE.

noOfSamplesPerAggregate: the number of incoming samples that the

driver will merge together (or aggregate: see aggregation) to create each
value pair passed to the application. The value must be between 1 and
max_samples.

overview_buffer_size: the size of the overview buffers, temporary

buffers used by the driver to store data before passing it to your application.
You can check for overview buffer overruns using the
ps2000_overview_buffer_status function and adjust the overview

buffer size if necessary. The maximum allowable value is 1,000,000. We
recommend using an initial value of 15,000 samples.

Returns non-zero: if streaming has been enabled correctly

0: if a problem occurred or a value was out of range



API Functions

40Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.20 ps2000SetAdvTriggerChannelConditions
int16_t ps2000SetAdvTriggerChannelConditions
(

int16_t                      handle,
PS2000_TRIGGER_CONDITIONS    *conditions,
int16_t                      nConditions

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by a
PS2000_TRIGGER_CONDITIONS structure.

Applicability Available in block mode and fast streaming mode only

PicoScope 2202, 2204, 2204A, 2205 and 2205A only

Arguments handle: the handle of the required oscilloscope

conditions: a pointer to a PS2000_TRIGGER_CONDITIONS structure

specifying the conditions that should be applied to the current trigger
channel. If NULL, triggering is switched off.

nConditions: should be set to 1 if conditions is non-null, otherwise 0

Returns 0: if unsuccessful, or if one or more of the arguments are out of range

non-zero: if successful



API Functions

41Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.20.1 PS2000_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps2000SetAdvTriggerChannelConditions in the

conditions argument to specify the trigger conditions, and is defined as follows:

typedef struct tPS2000TriggerConditions
{

PS2000_TRIGGER_STATE channelA;
PS2000_TRIGGER_STATE channelB;
PS2000_TRIGGER_STATE channelC;
PS2000_TRIGGER_STATE channelD;
PS2000_TRIGGER_STATE external;
PS2000_TRIGGER_STATE pulseWidthQualifier;

} PS2000_TRIGGER_CONDITIONS;

Applicability See ps2000SetAdvTriggerChannelConditions

Members channelA, channelB: the type of condition that should be applied to

each channel. Use these constants:
CONDITION_DONT_CARE (0)
CONDITION_TRUE (1)
CONDITION_FALSE (2)

channelC, channelD: not used

external: not used

pulseWidthQualifier: the type of condition to apply to the pulse width

qualifier. Choose from the same list of constants given under channelA,
channelB.

Remarks

The channels that are set to CONDITION_TRUE or CONDITION_FALSE must all meet their

conditions simultaneously to produce a trigger. Channels set to CONDITION_DONT_CARE are

ignored.

The PicoScope 2202 oscilloscope can use only a single input channel (either channel A or
channel B) for the trigger source. Therefore you may define CONDITION_TRUE or

CONDITION_FALSE for only one of these channels at a time. You can, optionally, set up the

pulse width qualifier in combination with one of the input channels.

The PicoScope 2204, 2204A, 2205 and 2205A models can all trigger from both channel A and
channel B, and therefore all support logic triggering.



API Functions

42Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.21 ps2000SetAdvTriggerChannelDirections
int16_t ps2000SetAdvTriggerChannelDirections
(

int16_t handle,
PS2000_THRESHOLD_DIRECTION channelA,
PS2000_THRESHOLD_DIRECTION channelB,
PS2000_THRESHOLD_DIRECTION channelC,
PS2000_THRESHOLD_DIRECTION channelD,
PS2000_THRESHOLD_DIRECTION ext

)

This function sets the direction of the trigger for each channel.

Applicability Available in block mode and fast streaming mode only

PicoScope 2202, 2204, 2204A, 2205 and 2205A only

Arguments handle: the handle of the required oscilloscope

channelA, channelB: specify the direction in which the signal must pass

through the threshold to activate the trigger. The allowable values for a
PS2000_THRESHOLD_DIRECTION variable are listed in the table below.

channelC, channelD: not used

ext: not used

Returns 0: if unsuccessful, or if one or more of the arguments are out of range

non-zero: if successful

PS2000_THRESHOLD_DIRECTION constants

PS2000_ABOVE for gated triggers: above a threshold
PS2000_BELOW for gated triggers: below a threshold
PS2000_ADV_RISING for threshold triggers: rising edge
PS2000_ADV_FALLING for threshold triggers: falling edge
PS2000_RISING_OR_FALLING for threshold triggers: either edge
PS2000_INSIDE for window-qualified triggers: inside window
PS2000_OUTSIDE for window-qualified triggers: outside window
PS2000_ENTER for window triggers: entering the window
PS2000_EXIT for window triggers: leaving the window
PS2000_ENTER_OR_EXIT for window triggers: either entering or leaving the window
PS2000_ADV_NONE no trigger



API Functions

43Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.22 ps2000SetAdvTriggerChannelProperties
int16_t ps2000SetAdvTriggerChannelProperties
(

int16_t                              handle,
PS2000_TRIGGER_CHANNEL_PROPERTIES    *channelProperties,
int16_t                              nChannelProperties,
int32_t                              autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability Available in block mode and fast streaming mode only

PicoScope 2202, 2204, 2204A, 2205 and 2205A only

Arguments handle: the handle of the required oscilloscope

channelProperties: a pointer to a

PS2000_TRIGGER_CHANNEL_PROPERTIES structure describing the

requested properties. If NULL, triggering is switched off.

nChannelProperties: should be set to 1 if channelProperties is

non-null, otherwise 0

autoTriggerMilliseconds: the time in milliseconds for which the

oscilloscope will wait before collecting data if no trigger event occurs. If this
is set to zero, the oscilloscope will wait indefinitely for a trigger.

Returns 0: if unsuccessful, or if one or more of the arguments are out of range

non-zero: if successful



API Functions

44Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.22.1 PS2000_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps2000SetAdvTriggerChannelProperties in the

channelProperties argument to specify the trigger mechanism, and is defined as follows:

typedef struct tPS2000TriggerChannelProperties
{
int16_t thresholdMajor;
int16_t thresholdMinor;
uint16_t hysteresis;
int16_t channel;
PS2000_THRESHOLD_MODE thresholdMode;
} PS2000_TRIGGER_CHANNEL_PROPERTIES

Applicability See ps2000SetAdvTriggerChannelProperties

Members thresholdMajor: the upper threshold at which the trigger event is to take

place. This is scaled in 16-bit ADC counts at the currently selected range for
that channel.

thresholdMinor: the lower threshold at which the trigger event is to take

place. This is scaled in 16-bit ADC counts at the currently selected range for
that channel.

hysteresis: the hysteresis that the trigger has to exceed before it will fire.

It is scaled in 16-bit counts.

channel: the channel to which the properties apply

thresholdMode: either a level or window trigger. Use one of these

constants:
LEVEL (0)
WINDOW (1)



API Functions

45Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.23 ps2000SetAdvTriggerDelay
int16_t ps2000SetAdvTriggerDelay
(

int16_t     handle,
uint32_t    delay,
float       preTriggerDelay

)

This function sets the pre-trigger and post-trigger delays. The default action, when both these
delays are zero, is to start capturing data beginning with the trigger event and to stop a
specified time later. The start of capture can be delayed by using a non-zero value of delay.
Alternatively, the start of capture can be advanced to a time before the trigger event by using
a negative value of preTriggerDelay. If both arguments are non-zero then their effects

are added together.

Applicability Block mode only

PicoScope 2202, 2204, 2204A, 2205 and 2205A only

Arguments handle: the handle of the required oscilloscope

delay: the post-trigger delay, measured in sample periods. This is the time

between the trigger event and the sample at time t = 0. For example, at a
timebase of 50 MS/s, or 20 ns per sample, and with delay = 100, the

post-trigger delay would be 100   20 ns = 2 µ s.
Range: [0, 232–1]

preTriggerDelay: the location of the sample at time t = 0 within the

data block, as a percentage of the data block length. 0% places t = 0 at the
start of the block, –50% places it in the middle, and –100% places it at the
end. Positive values can also be used to place t = 0 before the beginning of
the data block, but the delay argument is more convenient for this

purpose as it has a wider range.
Range: [–100%, +100%]

Returns 0: if unsuccessful, or if one or more of the arguments are out of range

non-zero: if successful

Example 1: 
delay = 0, 

preTriggerDelay = –50%

Example 2: 
delay = 1 ms, 

preTriggerDelay = –50%



API Functions

46Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.24 ps2000_set_channel
int16_t ps2000_set_channel
(

int16_t    handle,
int16_t    channel,
int16_t    enabled,
int16_t    dc, 
int16_t    range

)

Specifies if a channel is to be enabled, the AC/DC coupling mode and the input range.

Note: The channels are not configured until capturing starts.

Applicability All modes

Arguments handle: the handle of the required oscilloscope

channel: an enumerated type specifying the channel. Use

PS2000_CHANNEL_A (0) or PS2000_CHANNEL_B (1).

enabled: specifies if the channel is active:

TRUE = active

FALSE = inactive

dc: specifies the AC/DC coupling mode:

TRUE:  DC coupling

FALSE: AC coupling

range: a code between 1 and 10. See the table below, but note that each

oscilloscope variant supports only a subset of these ranges.

Returns 0: if unsuccessful, or if one or more of the arguments are out of range

non-zero: if successful

Code Enumeration Range

1 PS2000_20MV ±20 mV

2 PS2000_50MV ±50 mV

3 PS2000_100MV ±100 mV

4 PS2000_200MV ±200 mV

5 PS2000_500MV ±500 mV

6 PS2000_1V ±1 V

7 PS2000_2V ±2 V

8 PS2000_5V ±5 V

9 PS2000_10V ±10 V

10 PS2000_20V ±20 V



API Functions

47Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.25 ps2000_set_ets
int32_t ps2000_set_ets
(

int16_t    handle,
int16_t    mode,
int16_t    ets_cycles,
int16_t    ets_interleave

)
This function is used to enable or disable ETS mode and to set the ETS parameters.

Applicability Not PicoScope 2202

Arguments handle: the handle of the required oscilloscope

mode:

PS2000_ETS_OFF (0) - disables ETS

PS2000_ETS_FAST (1) - enables ETS and provides ets_cycles
cycles of data, which may contain data from previously returned cycles

PS2000_ETS_SLOW (2) - enables ETS and provides fresh data every

ets_cycles cycles. PS2000_ETS_SLOW takes longer to provide each

data set, but the data sets are more stable and unique

ets_cycles: the number of cycles to store. The computer can then select

ets_interleave cycles to give the most uniform spread of samples.

ets_cycles should be between two and five times the value of

ets_interleave. 

ets_interleave: the number of ETS interleaves to use. If the sample

time is 20 ns and the interleave 10, the approximate time per sample will be
2 ns.

Returns The effective sample time in picoseconds, if ETS is enabled

0: if ETS is disabled or one of the parameters is out of range



API Functions

48Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.26 ps2000_set_light
int16_t ps2000_set_light
(

int16_t    handle,
int16_t    state

)

This function controls the white light that illuminates the probe tip on a handheld oscilloscope.

Applicability PicoScope 2104 and 2105 handheld oscilloscopes only

Arguments handle: handle of the oscilloscope

state:

0: light off

1: light on

Returns 0: the function failed, for example if a PicoScope 2000 Series oscilloscope
was not found

non-zero: success



API Functions

49Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.27 ps2000_set_led
int16_t ps2000_set_led
(

int16_t    handle,
int16_t    state

)

This function turns the LED on the oscilloscope on and off, and controls its color.

Applicability PicoScope 2104 and 2105 handheld oscilloscopes only

Arguments handle: handle of the oscilloscope

state:

3: off
1: red
2: green

Returns 0: the function failed, for example if a PicoScope 2000 Series oscilloscope
was not found

non-zero: success



API Functions

50Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.28 ps2000SetPulseWidthQualifier
int16_t ps2000SetPulseWidthQualifier
(

int16_t                       handle,
PS2000_PWQ_CONDITIONS         *conditions,
int16_t                       nConditions,
PS2000_THRESHOLD_DIRECTION    direction,
uint32_t                      lower,
uint32_t                      upper,
PS2000_PULSE_WIDTH_TYPE       type

)

This function sets up pulse width qualification, which can be used on its own for pulse width
triggering or combined with other triggering to produce more complex triggers. The pulse
width qualifier is set by defining a conditions structure. 

Applicability Available in block mode and fast streaming mode only

PicoScope 2202, 2204, 2204A, 2205 and 2205A only

Arguments handle: the handle of the required oscilloscope

conditions: a pointer to a PS2000_PWQ_CONDITIONS structure

specifying the conditions that should be applied to the trigger channel. If
conditions is NULL then the pulse width qualifier is not used.

nConditions: should be set to 1 if conditions is non-null, otherwise 0

direction: the direction of the signal required to trigger the pulse

lower: the lower limit of the pulse width counter

upper: the upper limit of the pulse width counter. This parameter is used

only when the type is set to PW_TYPE_IN_RANGE or

PW_TYPE_OUT_OF_RANGE.

type: the pulse width type, one of these constants:
PW_TYPE_NONE do not use the pulse width qualifier
PW_TYPE_LESS_THAN pulse width less than lower
PW_TYPE_GREATER_THAN pulse width greater than lower
PW_TYPE_IN_RANGE pulse width between lower and upper
PW_TYPE_OUT_OF_RANGE pulse width not between lower and upper

Returns 0: if unsuccessful, or if one or more of the arguments are out of range

non-zero: if successful



API Functions

51Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.28.1 PS2000_PWQ_CONDITIONS structure

A structure of this type is passed to ps2000SetPulseWidthQualifier in the conditions
argument to specify the pulse-width  qualifier conditions, and is defined as follows:

typedef struct tPS2000PwqConditions
{

PS2000_TRIGGER_STATE channelA;
PS2000_TRIGGER_STATE channelB;
PS2000_TRIGGER_STATE channelC;
PS2000_TRIGGER_STATE channelD;
PS2000_TRIGGER_STATE external;

} PS2000_PWQ_CONDITIONS

Applicability Pulse-width-qualified triggering

Members channelA, channelB: the type of condition that should be applied to

each channel. Choose from these constants:
CONDITION_DONT_CARE (0)
CONDITION_TRUE (1)
CONDITION_FALSE (2)

channelC, channelD, external: not used



API Functions

52Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.29 ps2000_set_sig_gen_arbitrary
int16_t ps2000_set_sig_gen_arbitrary
(

int16_t              handle,
int32_t              offsetVoltage,
uint32_t             pkToPk,
uint32_t             startDeltaPhase,
uint32_t             stopDeltaPhase,
uint32_t             deltaPhaseIncrement,
uint32_t             dwellCount,
uint8_t              *arbitraryWaveform,
int32_t              arbitraryWaveformSize,
PS2000_SWEEP_TYPE    sweepType,
uint32_t             sweeps

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a 32-bit
phase accumulator that indicates the present location in the waveform. The top bits of the
phase accumulator are used as an index into a buffer containing the arbitrary waveform. The
remaining bits act as the fractional part of the index, enabling high-resolution control of output
frequency and allowing the generation of lower frequencies.

The generator steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize-1 to the phase accumulator every ddsPeriod (1 / ddsFrequency). If the
deltaPhase is constant, the generator produces a waveform at a constant frequency that can
be calculated as follows:

( ) ( )outputFrequency = ddsFrequency ×
deltaPhase

phaseAccumulatorSize
×

awgBufferSize
arbitraryWaveformSize

where:

outputFrequency = repetition rate of the complete arbitrary waveform
ddsFrequency = clock rate of phase accumulator (not the same as the DAC
update rate)
deltaPhase = user-specified delta phase value
phaseAccumulatorSize = 232 for all models
awgBufferSize = AWG buffer size
arbitraryWaveformSize = length in samples of the user-defined waveform

Parameter Value

phaseAccumulatorSize 232

awgBufferSize 4096

ddsFrequency 48 MHz

ddsPeriod (= 1/ddsFrequency) 20.833 ns (= 1/48 MHz)

It is also possible to sweep the frequency by continually modifying the deltaPhase. This is done
by setting up a deltaPhaseIncrement that the oscilloscope adds to the deltaPhase at

intervals specified by dwellCount.



API Functions

53Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Applicability All modes. PicoScope 2203, 2204, 2204A, 2205 and 2205A only

Arguments

handle: the handle of the required oscilloscope

offsetVoltage: the voltage offset, in microvolts, to be applied to the waveform

pkToPk: the peak-to-peak voltage, in microvolts, of the waveform signal

startDeltaPhase: the initial value added to the phase counter as the generator begins to

step through the waveform buffer

stopDeltaPhase: the final value added to the phase counter before the generator restarts

or reverses the sweep

deltaPhaseIncrement: the amount added to the delta phase value every time the

dwellCount period expires. This determines the amount by which the generator sweeps the

output frequency in each dwell period.

dwellCount: the time, in multiples of ddsPeriod, between successive additions of

deltaPhaseIncrement to the delta phase counter. This determines the rate at which the

generator sweeps the output frequency.

arbitraryWaveform: a pointer to a buffer that holds the waveform pattern as a set of

samples equally spaced in time

arbitraryWaveformSize: the size of the arbitrary waveform buffer

sweepType: determines whether the startDeltaPhase is swept up to the

stopDeltaPhase, or down to it, or repeatedly swept up and down. Use one of the following

values:
UP
DOWN
UPDOWN
DOWNUP

sweeps: the number of times to sweep the frequency after a trigger event, according to

sweepType.

Returns 0: if one of the parameters is out of range

non-zero: if successful



API Functions

54Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.30 ps2000_set_sig_gen_built_in
int16_t ps2000_set_sig_gen_built_in
(

int16_t              handle,
int32_t              offsetVoltage,
uint32_t             pkToPk,
PS2000_WAVE_TYPE     waveType,
float                startFrequency,
float                stopFrequency,
float                increment,
float                dwellTime,
PS2000_SWEEP_TYPE    sweepType,
uint32_t             sweeps

)

This function sets up the signal generator to produce a signal from a list of built-in waveforms.
If different start and stop frequencies are specified, the oscilloscope will sweep either up, down
or up and down.

Applicability PicoScope 2203, 2204, 2204A, 2205 and 2205A only

Arguments

handle: the handle of the required oscilloscope

offsetVoltage: the voltage offset, in microvolts, to be applied to the waveform

pkToPk: the peak-to-peak voltage, in microvolts, of the waveform signal

waveType: the type of waveform to be generated by the oscilloscope. See the table below.

startFrequency: the frequency at which the signal generator should begin. For allowable

values see ps2000.h.

stopFrequency: the frequency at which the sweep should reverse direction or return to the

start frequency

increment: the amount by which the frequency rises or falls every dwellTime seconds in

sweep mode

dwellTime: the time in seconds between frequency changes in sweep mode

sweepType: specifies whether the frequency should sweep from startFrequency to

stopFrequency, or in the opposite direction, or repeatedly reverse direction. Use one of

these values of the enumerated type enPS2000SweepType:
PS2000_UP
PS2000_DOWN
PS2000_UPDOWN
PS2000_DOWNUP

sweeps: the number of times to sweep the frequency

Returns 0: if one of the parameters is out of range

non-zero: if successful



API Functions

55Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

waveType values

PS2000_SINE sine wave
PS2000_SQUARE square wave
PS2000_TRIANGLE triangle wave
PS2000_RAMPUP rising sawtooth
PS2000_RAMPDOWN falling sawtooth
PS2000_DC_VOLTAGE DC voltage
PS2000_GAUSSIAN Gaussian
PS2000_SINC sin(x)/x
PS2000_HALF_SINE half (full-wave rectified) sine



API Functions

56Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.31 ps2000_set_trigger
int16_t ps2000_set_trigger
(

int16_t    handle,
int16_t    source,
int16_t    threshold,
int16_t    direction,
int16_t    delay,
int16_t    auto_trigger_ms

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types on analog
channels, and does not allow more than one channel to have a trigger applied to it. Any
previous pulse width qualifier is canceled. The trigger threshold includes a small, fixed amount
of hysteresis.

For oscilloscopes that support advanced triggering, see
ps2000SetAdvTriggerChannelConditions, ps2000SetAdvTriggerDelay and related

functions.

Applicability Triggering is available in block mode and fast streaming mode

Arguments handle: the handle of the required oscilloscope

source: where to look for a trigger. Use PS2000_CHANNEL_A (0),

PS2000_CHANNEL_B (1) or PS2000_NONE(5). The number of channels

available depends on the oscilloscope.

threshold: the threshold for the trigger event. This is scaled in 16-bit ADC

counts at the currently selected range.

direction: use PS2000_RISING (0) or PS2000_FALLING (1)

delay: the delay, as a percentage of the requested number of data points,

between the trigger event and the start of the block. It should be in the
range -100% to +100%. Thus, 0% means that the trigger event is at the
first data value in the block, and -50% means that it is in the middle of the
block. If you wish to specify the delay as a floating-point value, use
ps2000_set_trigger2 instead. Note that if delay = 0 and you call

ps2000_stop before a trigger event occurs, the device will return no data.

auto_trigger_ms: the delay in milliseconds after which the oscilloscope

will collect samples if no trigger event occurs. If this is set to zero the
oscilloscope will wait for a trigger indefinitely.

Returns 0: if one of the parameters is out of range

non-zero: if successful



API Functions

57Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.32 ps2000_set_trigger2
int16_t ps2000_set_trigger2
(

int16_t    handle,
int16_t    source,
int16_t    threshold,
int16_t    direction, 
float      delay,
int16_t    auto_trigger_ms 

)

This function is used to enable or disable triggering and set its parameters. It has the same
behavior as ps2000_set_trigger, except that the delay parameter is a floating-point

value.

For oscilloscopes that support advanced triggering, see
ps2000SetAdvTriggerChannelConditions and related functions.

Applicability Triggering is available in block mode and fast streaming mode only

Arguments handle: the handle of the required oscilloscope

source: specifies where to look for a trigger. Use PS2000_CHANNEL_A
(0), PS2000_CHANNEL_B (1) or PS2000_NONE (5).

threshold: the threshold for the trigger event. This is scaled in 16-bit ADC

counts at the currently selected range.

direction: use PS2000_RISING (0) or PS2000_FALLING (1)

delay: specifies the delay, as a percentage of the requested number of

data points, between the trigger event and the start of the block. It should
be in the range -100% to +100%. Thus, 0% means that the trigger event
is at the first data value in the block, and -50% means that it is in the
middle of the block. If you wish to specify the delay as an integer, use
ps2000_set_trigger instead. Note that if delay = 0 and you call

ps2000_stop before a trigger event occurs, the device will return no data.

auto_trigger_ms: the delay in milliseconds after which the oscilloscope

will collect samples if no trigger event occurs. If this is set to zero the
oscilloscope will wait for a trigger indefinitely.

Returns 0: if one of the parameters is out of range

non-zero: if successful



API Functions

58Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.33 ps2000_stop
int16_t ps2000_stop
(

int16_t    handle
)

Call this function to stop the oscilloscope sampling data. 

When running the device in streaming mode, you should always call this function after the end
of a capture to ensure that the scope is ready for the next capture.

When running the device in block mode or ETS mode, you can call this function to interrupt
data capture.

Note that if you are using block mode or ETS mode and call this function before the
oscilloscope is ready, no capture will be available and the driver will not return any samples.

Applicability All modes

Arguments handle: the handle of the required oscilloscope

Returns 0: if an invalid handle is passed

non-zero: if successful



API Functions

59Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

5.34 my_get_overview_buffers
void my_get_overview_buffers
(

int16_t     **overviewBuffers,
int16_t     overflow,
uint32_t    triggeredAt,
int16_t     triggered,
int16_t     auto_stop,
uint32_t    nValues 

)

This is the callback function in your application that receives data from the driver in fast
streaming mode. You pass a pointer to this function to
ps2000_get_streaming_last_values, which then calls it back when the data is ready.

Your callback function should do nothing more than copy the data to another buffer within
your application. To maintain the best application performance, the function should return as
quickly as possible without attempting to process or display the data.

The function name my_get_overview_buffers is arbitrary. When you write this function,

you can give it any name you wish. The PicoScope driver does not need to know your
function's name, as it refers to it only by the pointer that you pass to
ps2000_get_streaming_last_values.

For an example of a suitable callback function, see the programming examples included in the
Pico Technology SDK.



API Functions

60Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Applicability Fast streaming mode only

PicoScope 2202, 2203, 2204, 2204A, 2205 and 2205A only

Not compatible with ETS triggering - has no effect in ETS mode

Arguments overviewBuffers: a pointer to a location where

ps2000_get_streaming_last_values will store a pointer to its

overview buffers that contain the sampled data. The driver creates the
overview buffers when you call ps2000_run_streaming_ns to start fast

streaming. overviewBuffers is a two dimensional array containing an

array of length nValues for each channel (overviewBuffers[4]
[nValues]). Disabled channels return a null pointer resulting in four

overview pointers whether all channels are enabled or not.

overviewBuffer [0]
overviewBuffer [1]
overviewBuffer [2]
overviewBuffer [3]

ch_a_max
ch_a_min
ch_b_max
ch_b_min

overflow: a bit field that indicates whether there has been a voltage

overflow and, if so, on which channel. The bit assignments are as follows:
Bit 0 - Ch A overflow
Bit 1 - Ch B overflow

triggeredAt: an index into the overview buffers, indicating the sample at

the trigger event. Valid only when triggered is TRUE.

triggered: a Boolean indicating whether a trigger event has occurred and

triggeredAt is valid. Any non-zero value signifies TRUE.

auto_stop: a Boolean indicating whether streaming data capture has

automatically stopped. Any non-zero value signifies TRUE.

nValues: the number of values in each overview buffer

Returns nothing



Programming examples

61Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

6 Programming examples
Your SDK installation includes programming examples in several languages and development
environments. Please refer to the SDK for details.



Driver error codes

62Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

7 Driver error codes

Code Name Description

0 PS2000_OK The oscilloscope is functioning correctly.

1 PS2000_MAX_UNITS_OPENED Attempts have been made to open more than
PS2000_MAX_UNITS oscilloscopes.

2 PS2000_MEM_FAIL Not enough memory could be allocated on the
host machine.

3 PS2000_NOT_FOUND An oscilloscope could not be found.

4 PS2000_FW_FAIL Unable to download firmware. 

5 PS2000_NOT_RESPONDING The oscilloscope is not responding to commands
from the PC.

6 PS2000_CONFIG_FAIL The configuration information in the oscilloscope
has become corrupt or is missing.

7 PS2000_OS_NOT_SUPPORTED The operating system is not supported by this
driver.



Glossary

63Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

8 Glossary
Aggregation. In fast streaming mode, the PicoScope 2000 driver can use a method called
aggregation to reduce the amount of data your application needs to process. This means that
for every block of consecutive samples, it stores only the minimum and maximum values. You
can set the number of samples in each block, called the aggregation parameter, when you call
ps2000_run_streaming_ns for real-time capture, and when you call

ps2000_get_streaming_values to obtain post-processed data.

Analog bandwidth. The input frequency at which the signal amplitude has fallen by 3 dB, or by
half the power, from its nominal value.

Block mode. A sampling mode in which the computer prompts the oscilloscope to collect a
block of data into its internal memory before stopping the oscilloscope and transferring the
whole block into computer memory. This is the best mode to use when the input signal being
sampled contains high frequencies. To avoid aliasing effects, the sampling rate must be greater
than twice the maximum frequency in the input signal.

Buffer size. The size of the oscilloscope's buffer memory. The oscilloscope uses this to store
data temporarily so that it can sample data independently of the speed at which it can transfer
data to the computer.

Coupling mode. This mode selects either AC or DC coupling in the oscilloscope's input path.
Use AC mode for small signals that may be superimposed on a DC level. Use DC mode for
measuring absolute voltage levels. Set the coupling mode using ps2000_set_channel.

Driver. A piece of software that controls a hardware device. The driver for the PicoScope
2000 Series PC Oscilloscopes is supplied in the form of a 32-bit Windows DLL, which contains
functions that you can call from your application.

ETS. Equivalent time sampling. Some PicoScope 2000 Series oscilloscopes can collect data
over a number of cycles of a repetitive waveform to give a higher effective sampling rate than
is possible for a single cycle. Equivalent time sampling allows the oscilloscope to use faster
timebases than those available in real-time mode.

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope is capable of acquiring per second. Maximum sample rates are usually given in
MS/s (megasamples per second) or GS/s (gigasamples per second). The higher the sampling
speed of the oscilloscope, the more accurate the representation of the high-frequency details
in a fast signal. 

Oversampling. A method of increasing the effective resolution of a measurement by sampling
faster than the required sampling rate, then averaging the extra samples. An oversampling
factor of four increases the effective resolution by one bit, but this increased resolution comes
at the expense of reducing the maximum sampling rate by the same factor.

Overview buffer. A buffer in the PC's memory in which the PicoScope 2000 Series driver
temporarily stores data on its way from the oscilloscope to the application's buffer.

PC Oscilloscope. A virtual instrument consisting of a PicoScope PC Oscilloscope and a
software application.

PicoScope 2000 Series. A range of low-cost PC Oscilloscopes that includes the PicoScope
2202, 2203, 2204 and 2205 two-channel oscilloscopes and the PicoScope 2104 and 2105
handheld oscilloscopes.



Glossary

64Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

PicoScope software. This is an application that accompanies all our PC Oscilloscopes.
Although you do not need it if you are writing your own application, you should install it
anyway, because it includes the drivers that you will need to control the oscilloscope.

Real-time continuous mode. A sampling mode in which the software repeatedly requests
single samples from the oscilloscope. This mode is suitable for low sampling rates when you
require the latest sample to be displayed as soon as it is captured.

Streaming mode. A sampling mode in which the oscilloscope samples data and returns it to
the computer in an unbroken stream. This mode of operation is suitable when the input signal
being sampled contains only low frequencies.

Timebase. A number that is supplied to the driver to specify a sampling rate for the
oscilloscope. Each oscilloscope model has a different range of possible sampling frequencies,
as specified in the User's Guide for that model.

USB 1.1. An early version of the Universal Serial Bus standard found on older PCs. Although
your PicoScope will work with a USB 1.1 port, it will operate much more slowly than with a
USB 2.0 or 3.0 port.

USB 2.0. Universal Serial Bus (High Speed). A standard port used to connect external devices
to PCs. The high-speed data connection provided by a USB 2.0 port enables your PicoScope to
achieve its maximum performance.

USB 3.0. A faster version of the Universal Serial Bus standard. Your PicoScope is fully
compatible with USB 3.0 ports and will operate with the same performance as on a USB 2.0
port.

Vertical resolution. A value, in bits, that indicates the number of input voltage levels that the
oscilloscope can distinguish. Calculation techniques can improve the effective resolution.

Voltage range. The range of input voltages that the oscilloscope will measure in a given
mode.



Index

65Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

Index

A
AC/DC control    9, 46, 63

Advanced triggering    40, 42, 43, 50

Aggregation    14, 21, 39, 63

Aliasing    10

Analog bandwidth    63

Arbitrary wveform generator    52

AWG    52

B
Block mode    9, 10, 11, 15, 37, 63

using    11

Buffer size    63

C
Callback    59

Channel    8, 9, 46, 56, 57

Closing a unit    18

Compatible streaming mode    13

using    13

Coupling mode    63

D
Data acquisition    14

Data logger    5

Delayed trigger    45

Driver    8, 63

error codes    62

E
Equivalent time sampling    63

Error codes    62

ETS    47, 63

mode    15

mode, using    15

F
Fast streaming mode    14

using    14

Functions    17

my_get_overview_buffers    59

ps2000_close_unit    18

ps2000_flash_led    19

ps2000_get_streaming_last_values    20

ps2000_get_streaming_values    21

ps2000_get_streaming_values_no_aggregation    23

ps2000_get_timebase    25

ps2000_get_times_and_values    26

ps2000_get_unit_info    28

ps2000_get_values    29

ps2000_last_button_press    30

ps2000_open_unit    31

ps2000_open_unit_async    32

ps2000_open_unit_progress    33

ps2000_overview_buffer_status    34

ps2000_ready    36

ps2000_run_block    37

ps2000_run_streaming    38

ps2000_run_streaming_ns    39

ps2000_set_channel    46

ps2000_set_ets    47

ps2000_set_led    49

ps2000_set_light    48

ps2000_set_sig_gen_arbitrary    52

ps2000_set_sig_gen_built_in    54

ps2000_set_trigger    56

ps2000_set_trigger2    57

ps2000_stop    58

ps2000PingUnit    35

ps2000SetAdvTriggerChannelConditions    40

ps2000SetAdvTriggerChannelDirections    42

ps2000SetAdvTriggerChannelProperties    43

ps2000SetAdvTriggerDelay    45

ps2000SetPulseWidthQualifier    50

H
Headlight    48

High-precision scopes    14

L
LED    19, 49

License conditions    6

Light    48

M
Maximum sampling rate    63

Memory in scope    11

Multi-unit operation    16

N
Normal mode    13



Index

66Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.ps2000pg.en-12

PicoScope 2000 Series Programmer's Guide

O
One-shot signal    15

Opening a unit    31, 32, 33

Oversampling    10, 63

Overview buffer    34, 63

P
PC oscilloscope    5, 63

PicoLog software    5

picopp.inf    8

picopp.sys    8

PicoScope 2000 Series    5, 16, 62, 63

PicoScope software    5, 8, 62, 64

Ping unit    35

Post-trigger delay    45

Pre-trigger    9

Pre-trigger delay    45

PS2000_PWQ_CONDITIONS structure    51

PS2000_THRESHOLD_DIRECTION constants    42

PS2000_TRIGGER_CHANNEL_PROPERTIES structure    44

PS2000_TRIGGER_CONDITIONS structure    41

R
Real-time continuous mode    64

Resolution, vertical    10

S
Sampling modes    11

Sampling rate    15

Signal generator    9, 11

arbitrary waveforms    52

built-in waveforms    54

Stopping sampling    58

Streaming mode    11, 13, 64

compatible    13

fast    14

normal    13

windowed    13

Sweep    9

System requirements, minimum    5

T
Threshold voltage    9

Time interval    10, 15

Timebase    25, 37, 64

Trademarks    7

Trigger delay    45

Triggering    9, 15, 56, 57

U
USB    5

hub    16

V
Vertical resolution    10, 64

Voltage range    64

W
Warranty    7

Windowed mode    13





Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Copyright © 2006–2022 Pico Technology Ltd.  All rights reserved.

ps2000pg.en-12

Pico Technology
320 N Glenwood Blvd
Tyler
TX 75702
United States of America

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

sales@picotech.com
support@picotech.com

pico.asia-pacific@picotech.com

Asia-Pacific regional
office

Tel: +44 (0) 1480 396 395

United States
headquarters

United Kingdom
headquarters

Tel: +1 800 591 2796 Tel: +86 21 2226-5152

www.picotech.com

sales@picotech.com
support@picotech.com


	Introduction
	Overview
	Minimum system requirements
	Legal information
	Trademarks
	Warranty

	Programming the 2000 Series Oscilloscopes
	General procedure
	Driver
	Voltage ranges
	Triggering
	Signal generator
	AC/DC coupling
	Oversampling

	Sampling modes
	Block mode
	Using block mode

	Streaming mode
	Compatible streaming mode
	Using compatible streaming mode

	Fast streaming mode
	Using fast streaming mode


	ETS (Equivalent Time Sampling) mode
	Using ETS mode


	Combining several oscilloscopes
	API Functions
	ps2000_close_unit
	ps2000_flash_led
	ps2000_get_streaming_last_values
	ps2000_get_streaming_values
	ps2000_get_streaming_values_no_aggregation
	ps2000_get_timebase
	ps2000_get_times_and_values
	ps2000_get_unit_info
	ps2000_get_values
	ps2000_last_button_press
	ps2000_open_unit
	ps2000_open_unit_async
	ps2000_open_unit_progress
	ps2000_overview_buffer_status
	ps2000PingUnit
	ps2000_ready
	ps2000_run_block
	ps2000_run_streaming
	ps2000_run_streaming_ns
	ps2000SetAdvTriggerChannelConditions
	PS2000_TRIGGER_CONDITIONS structure

	ps2000SetAdvTriggerChannelDirections
	ps2000SetAdvTriggerChannelProperties
	PS2000_TRIGGER_CHANNEL_PROPERTIES structure

	ps2000SetAdvTriggerDelay
	ps2000_set_channel
	ps2000_set_ets
	ps2000_set_light
	ps2000_set_led
	ps2000SetPulseWidthQualifier
	PS2000_PWQ_CONDITIONS structure

	ps2000_set_sig_gen_arbitrary
	ps2000_set_sig_gen_built_in
	ps2000_set_trigger
	ps2000_set_trigger2
	ps2000_stop
	my_get_overview_buffers

	Programming examples
	Driver error codes
	Glossary

