
Programmer's Guide

ps5000apg.en r4

Flexible Resolution Oscilloscopes

PicoScope® 5000 Series (A API)

IPicoScope 5000 Series (A API) Programmer's Guide

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

Contents
1 Welcome ... 1

2 Introduction ... 2

1 License agreement ... 2

2 Trademarks .. 2

3 System requirements ... 3

3 Programming with the PicoScope 5000 Series (A API) .. 4

1 Driver ... 4

2 Voltage ranges ... 5

3 MSO digital data ... 6

4 Triggering .. 7

5 Sampling modes .. 8

1 Block mode ... 9

2 Rapid block mode .. 12

3 ETS (Equivalent Time Sampling) ... 18

4 Streaming mode .. 20

5 Retrieving stored data ... 21

6 Timebases .. 22

7 Power options .. 24

8 Combining several oscilloscopes ... 25

4 API functions .. 26

1 ps5000aChangePowerSource – select USB or AC adaptor power ... 26

2 ps5000aChannelCombinationsStateless – find out which channels can be used 27

1 PS5000A_CHANNEL_FLAGS enumerated type .. 28

3 ps5000aCloseUnit – close a scope device .. 29

4 ps5000aCurrentPowerSource – indicate the current power state of the device 30

5 ps5000aEnumerateUnits – find all connected oscilloscopes ... 31

6 ps5000aFlashLed – flash the front-panel LED ... 32

7 ps5000aGetAnalogueOffset – query the permitted analog offset range ... 33

1 PS5000A_RANGE enumerated type .. 34

2 PS5000A_COUPLING enumerated type .. 34

8 ps5000aGetChannelInformation – query which ranges are available on a device 35

1 PS5000A_CHANNEL_INFO enumerated type ... 35

9 ps5000aGetDeviceResolution – retrieve the resolution the device will run in 36

10 ps5000aGetMaxDownSampleRatio – query the aggregation ratio for data 37

11 ps5000aGetMaxSegments – query the maximum number of segments 38

12 ps5000aGetMinimumTimebaseStateless – find fastest available timebase 39

13 ps5000aGetNoOfCaptures – find out how many captures are available 40

14 ps5000aGetNoOfProcessedCaptures – query number of captures processed 41

15 ps5000aGetStreamingLatestValues – get streaming data while scope is running 42

16 ps5000aGetTimebase – get properties of the selected timebase ... 43

ContentsII

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

17 ps5000aGetTimebase2 – get properties of the selected timebase ... 44

18 ps5000aGetTriggerInfoBulk – get trigger timestamps ... 45

1 PS5000A_TRIGGER_INFO structure .. 46

2 Time stamping ... 46

3 PS5000A_TIME_UNITS enumerated type ... 48

19 ps5000aGetTriggerTimeOffset – find out when trigger occurred (32-bit) 49

20 ps5000aGetTriggerTimeOffset64 – find out when trigger occurred (64-bit) 50

21 ps5000aGetUnitInfo – read information about scope device ... 51

22 ps5000aGetValues – retrieve block-mode data with callback .. 52

1 PS5000A_RATIO_MODE enumerated type ... 53

23 ps5000aGetValuesAsync – retrieve streaming data with callback .. 54

24 ps5000aGetValuesBulk – retrieve data in rapid block mode .. 55

25 ps5000aGetValuesOverlapped – set up data collection ahead of capture 56

1 Using the GetValuesOverlapped functions .. 56

26 ps5000aGetValuesOverlappedBulk – set up data collection in rapid block mode 58

27 ps5000aGetValuesTriggerTimeOffsetBulk – get rapid-block waveform timings (32-bit) 59

28 ps5000aGetValuesTriggerTimeOffsetBulk64 – get rapid–block waveform timings (64-bit) 60

29 ps5000aIsLedFlashing – check LED status ... 61

30 ps5000aIsReady – poll driver in block mode ... 62

31 ps5000aIsTriggerOrPulseWidthQualifierEnabled – find out whether trigger is enabled 63

32 ps5000aMaximumValue – get the maximum ADC count ... 64

33 ps5000aMemorySegments – divide scope memory into segments .. 65

34 ps5000aMinimumValue – get the minimum ADC count .. 66

35 ps5000aNearestSampleIntervalStateless – find nearest available sampling interval 67

36 ps5000aNoOfStreamingValues – get number of samples in streaming mode 68

37 ps5000aOpenUnit – open a scope device .. 69

38 ps5000aOpenUnitAsync – open a scope device without blocking ... 70

39 ps5000aOpenUnitProgress – check progress of OpenUnit call ... 71

40 ps5000aPingUnit – check communication with device .. 72

41 ps5000aQueryOutputEdgeDetect – check if output edge detection is enabled 73

42 ps5000aRunBlock – start block mode ... 74

43 ps5000aRunStreaming – start streaming mode ... 75

44 ps5000aSetAutoTriggerMicroSeconds – set auto-trigger timeout .. 76

45 ps5000aSetBandwidthFilter – specifies the bandwidth limit ... 77

1 PS5000A_BANDWIDTH_LIMITER enumerated type .. 77

46 ps5000aSetChannel – set up input channels .. 78

1 PS5000A_CHANNEL enumerated type ... 79

47 ps5000aSetDataBuffer – register data buffer with driver ... 80

48 ps5000aSetDataBuffers – register aggregated data buffers with driver 81

49 ps5000aSetDeviceResolution – set the hardware resolution ... 82

1 PS5000A_DEVICE_RESOLUTION enumerated type ... 82

50 ps5000aSetDigitalPort – set up digital inputs ... 84

1 MSO digital connector ... 84

51 ps5000aSetEts – set up equivalent-time sampling ... 85

IIIPicoScope 5000 Series (A API) Programmer's Guide

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

1 PS5000A_ETS_MODE enumerated type ... 86

52 ps5000aSetEtsTimeBuffer – set up buffer for ETS timings (64-bit) .. 87

53 ps5000aSetEtsTimeBuffers – set up buffer for ETS timings (32-bit) .. 88

54 ps5000aSetNoOfCaptures – set number of captures to collect in one run 89

55 ps5000aSetOutputEdgeDetect – change triggering behavior ... 90

56 ps5000aSetPulseWidthDigitalPortProperties – set digital port pulse width 91

57 ps5000aSetPulseWidthQualifier – set up pulse width triggering ... 92

1 PS5000A_PWQ_CONDITIONS structure ... 93

58 ps5000aSetPulseWidthQualifierConditions – set up pulse width triggering 94

1 PS5000A_CONDITIONS_INFO enumerated type .. 94

59 ps5000aSetPulseWidthQualifierDirections – set up pulse width triggering 96

60 ps5000aSetPulseWidthQualifierProperties – set up pulse width triggering 97

1 PS5000A_PULSE_WIDTH_TYPE enumerated type .. 97

61 ps5000aSetSigGenArbitrary – set up arbitrary waveform generator ... 98

1 PS5000A_INDEX_MODE enumerated type ... 99

2 Calculating deltaPhase .. 100

3 PS5000A_SWEEP_TYPE enumerated type ... 101

4 PS5000A_EXTRA_OPERATIONS enumerated type .. 101

62 ps5000aSetSigGenBuiltIn – set up standard signal generator ... 102

1 PS5000A_SIGGEN_TRIG_TYPE enumerated type .. 103

2 PS5000A_SIGGEN_TRIG_SOURCE enumerated type ... 104

3 PS5000A_WAVE_TYPE enumerated type ... 104

63 ps5000aSetSigGenBuiltInV2 – high-precision signal generator setup .. 106

64 ps5000aSetSigGenPropertiesArbitrary – change AWG settings .. 107

65 ps5000aSetSigGenPropertiesBuiltIn – change function generator settings 108

66 ps5000aSetSimpleTrigger – set edge or level trigger ... 109

67 ps5000aSetTriggerChannelConditions – specify which channels to trigger on 110

1 PS5000A_TRIGGER_CONDITIONS structure .. 110

68 ps5000aSetTriggerChannelConditionsV2 – specify which channels to trigger on 112

1 PS5000A_CONDITION structure ... 112

2 PS5000A_TRIGGER_STATE enumerated type ... 113

69 ps5000aSetTriggerChannelDirections – set up signal polarities for triggering 114

1 PS5000A_THRESHOLD_DIRECTION enumerated type .. 115

70 ps5000aSetTriggerChannelDirectionsV2 – set up signal polarities for triggering 116

1 PS5000A_DIRECTION structure .. 116

2 PS5000A_THRESHOLD_MODE enumerated type .. 117

71 ps5000aSetTriggerChannelProperties – set up trigger thresholds .. 118

1 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure ... 119

72 ps5000aSetTriggerChannelPropertiesV2 – set up trigger thresholds ... 120

1 PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2 structure ... 120

2 Hysteresis .. 121

73 ps5000aSetTriggerDelay – set up post-trigger delay .. 122

74 ps5000aSetTriggerDigitalPortProperties – set up digital inputs for triggering 123

1 PS5000A_DIGITAL_CHANNEL_DIRECTIONS structure ... 124

ContentsIV

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

2 PS5000A_DIGITAL_CHANNEL enumerated type ... 124

3 PS5000A_DIGITAL_DIRECTION enumerated type ... 125

75 ps5000aSigGenArbitraryMinMaxValues – get AWG parameters ... 126

76 ps5000aSigGenFrequencyToPhase – convert frequency to phase count 127

77 ps5000aSigGenSoftwareControl – trigger the signal generator ... 128

78 ps5000aStop – stop data capture .. 129

79 ps5000aTriggerWithinPreTriggerSamples – change triggering behavior 130

1 PS5000A_TRIGGER_WITHIN_PRE_TRIGGER enumerated type .. 130

80 Callback functions ... 131

1 ps5000aBlockReady – indicate when block-mode data ready ... 132

2 ps5000aDataReady – indicate when post-collection data ready .. 133

3 ps5000aStreamingReady – indicate when streaming-mode data ready 134

81 Wrapper functions ... 135

5 Reference .. 137

1 Driver status codes .. 137

2 Enumerated types and constants ... 137

3 Numeric data types .. 137

4 Glossary .. 138

Index ... 141

PicoScope 5000 Series (A API) Programmer's Guide 1

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

1 Welcome

The PicoScope 5000A, 5000B and 5000D Series
PC Oscilloscopes from Pico Technology are a
range of high-specification, real-time measuring
instruments that connect to the USB port of your
computer. They offer various combinations of
portability, deep memory, fast sampling rates
and high bandwidth to suit a wide range of
applications. The range includes hi-speed USB
2.0 and SuperSpeed USB 3.0 devices.

This manual explains how to use the API (application programming interface) functions, so that you can
develop your own programs to collect and analyze data from the oscilloscope.

The information in this manual applies to the following oscilloscopes:

· PicoScope 5000A Series The A models are high-speed portable USB 2.0 oscilloscopes with
a function generator.

· PicoScope 5000B Series The B models have all the features of the A models with the
addition of an arbitrary waveform generator (AWG) and deeper
memory.

· PicoScope 5000D Series The D models are USB 3.0-connected and include an AWG. The D
MSO models have mixed-signal (analog and digital) inputs.

Related products

The PicoScope 5203 and 5204 oscilloscopes use the ps5000 API, which comes with its own Programmer's
Guide. For information on any PicoScope 5000 Series oscilloscope, refer to the documentation on
www.picotech.com.

https://www.picotech.com/

Introduction2

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

2 Introduction

2.1 License agreement

Grant of license. The material contained in this release is licensed, not sold. Pico Technology Limited ('Pico')
grants a license to the person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of
and agree to abide by these conditions.

Usage. The software in this release is for use only with Pico products or with data collected using Pico
products.

Copyright. The software in this release is for use only with Pico products or with data collected using Pico
products. You may copy and distribute the SDK without restriction as long as you do not remove any Pico
Technology copyright statements. The example programs in the SDK may be modified, copied and
distributed for the purpose of developing programs to collect data using Pico products.

Liability. Pico and its agents shall not be liable for any loss or damage, howsoever caused, related to the use
of Pico equipment or software, unless excluded by statute.

Fitness for purpose. No two applications are the same, so Pico cannot guarantee that its equipment or
software is suitable for a given application. It is therefore the user's responsibility to ensure that the product
is suitable for the user's application.

Mission-critical applications. Because the software runs on a computer that may be running other software
products, and may be subject to interference from these other products, this license specifically excludes
usage in 'mission-critical' applications, for example life-support systems.

Viruses. This software was continuously monitored for viruses during production. However, the user is
responsible for virus checking the software once it is installed.

Support. No software is ever error-free, but if you are dissatisfied with the performance of this software,
please contact our technical support staff.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the
right to charge for updates or replacements sent out on physical media.

2.2 Trademarks

Pico Technology, PicoScope and PicoSDK are trademarks of Pico Technology Limited, registered in the
United Kingdom and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or trademarks of Microsoft
Corporation in the USA and other countries. LabVIEW is a registered trademark of National Instruments
Corporation. MATLAB is a registered trademark of The MathWorks, Inc.

PicoScope 5000 Series (A API) Programmer's Guide 3

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

2.3 System requirements

Using the ps5000a API
To ensure that your PicoScope 5000 Series PC Oscilloscope operates correctly, you must have a computer
with at least the minimum system requirements to run one of the supported operating systems, as shown in
the following table. The performance of the oscilloscope will be better with a more powerful PC, and will
benefit from a multicore processor.

Item Specification

Operating system
Windows 7, 8 or 10, 32-bit and 64-bit versions.
Linux and macOS, 64-bit versions only: see
picotech.com for supported versions.

Processor, memory, free disk space As required by the operating system

Ports USB 2.0 or USB 3.0 port

USB
The ps5000a API offers four different methods of recording data, all of which support USB 2.0 and USB 3.0
connections.

The 5000A and 5000B Series oscilloscopes are all hi-speed USB 2.0 devices. They are compatible with USB
3.0 but will run at USB 2.0 speeds when connected to a USB 3.0 port.

The 5000D Series oscilloscopes are SuperSpeed USB 3.0 devices. They are compatible with USB 2.0 but will
run at USB 2.0 speeds when connected to a USB 2.0 port.

Programming with the PicoScope 5000 Series (A API)4

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3 Programming with the PicoScope 5000
Series (A API)

PicoSDK allows you to program a PicoScope 5000 Series (A API) oscilloscope using standard function calls.

A typical program for capturing data consists of the following steps:

· Open the scope unit

· Set up the input channels with the required voltage ranges and coupling type

· Set up triggering

· Start capturing data (see Sampling modes, where programming is discussed in more detail)

· Wait until the scope unit is ready

· Stop capturing data

· Copy data to a buffer

· Close the scope unit

The 'picotech' pages on GitHub contain links to programming examples in various languages and
development environments.

3.1 Driver

Microsoft Windows

Your application will communicate with a PicoScope 5000 Series library called ps5000a.dll, which is
supplied in 32-bit and 64-bit versions. This DLL is compatible with the 5000A, 5000B and 5000D Series
oscilloscopes. The DLL exports the ps5000a function definitions in stdcall format, which is compatible with
a wide range of programming languages.

ps5000a.dll depends on another DLL, picoipp.dll (which is supplied in 32-bit and 64-bit versions) and

a low-level driver called WinUsb.sys (or CyUsb3.sys on Windows 7). These are installed by the SDK and
configured when you plug the oscilloscope into each USB port for the first time. Your application does not
call these drivers directly.

Linux and Apple macOS
Please see the Downloads section of picotech.com for instructions on downloading the drivers for these
operating systems. The drivers use the cdecl calling convention. Linux libraries and dependencies are
distributed via our package repositories. macOS libraries and dependencies are distributed with PicoScope 6
for macOS.

https://github.com/picotech
https://www.picotech.com

PicoScope 5000 Series (A API) Programmer's Guide 5

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.2 Voltage ranges

You can set a device input channel to any voltage range from ±10 mV to ±20 V with the

ps5000aSetChannel function. Each sample is scaled to 16 bits, and the minimum and maximum values

returned to your application are given by ps5000aMinimumValue and ps5000aMaximumValue as
follows:

Function Voltage Value returned

decimal hex

8-bit

ps5000aMaximumValue maximum +32 512 7F00

zero 0 0000

ps5000aMinimumValue minimum –32 512 8100

12, 14, 15 and 16-bit

ps5000aMaximumValue maximum +32 767 7FFF

zero 0 0000

ps5000aMinimumValue minimum –32 767 8001

Example at 8-bit resolution

1. Call ps5000aSetChannel with

range set to PS5000A_1V.

2. Apply a sine wave input of
500 mV amplitude to the
oscilloscope.

3. Capture some data using the
desired sampling mode.

4. The data will be encoded as
shown opposite.

External trigger input
The external trigger input (marked Ext), where available, is scaled to a 16-bit value as follows:

Voltage Constant Digital value

PS5000A_EXT_MIN_VALUE –32 767

0 V 0

+5 V PS5000A_EXT_MAX_VALUE +32 767

Digital inputs (MSO devices only)

See ps5000aSetDigitalPort.

Programming with the PicoScope 5000 Series (A API)6

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.3 MSO digital data

Applicability

Mixed-signal oscilloscope (MSO) devices only

A PicoScope MSO has two 8-bit digital ports—PORT0 and PORT1—making a total of 16 digital channels.

Use the ps5000aSetDataBuffer and ps5000aSetDataBuffers functions to set up buffers into which
the driver will write data from each port individually. For compatibility with the analog channels, each buffer
is an array of 16-bit words. The 8-bit port data occupies the lower 8 bits of the word while the upper 8 bits of
the word are undefined.

PORT1 buffer PORT0 buffer

Sample0 [XXXXXXXX,D15...D8]0 [XXXXXXXX,D7...D0]0
...

Samplen–1 [XXXXXXXX,D15...D8]n–1 [XXXXXXXX,D7...D0]n–1

Retrieving stored digital data
The following C code snippet shows how to combine data from the two 8-bit ports into a single 16-bit word,
and then how to extract individual bits from the 16-bit word.

// Mask Port 1 values to get lower 8 bits

portValue = 0x00ff & appDigiBuffers[2][i];

// Shift by 8 bits to place in upper 8 bits of 16-bit word

portValue <<= 8;

// Mask Port 0 values to get lower 8 bits,

// then OR with shifted Port 1 bits to get 16-bit word

portValue |= 0x00ff & appDigiBuffers[0][i];

for (bit = 0; bit < 16; bit++)

{

 // Shift value 32768 (binary 1000 0000 0000 0000).

 // AND with value to get 1 or 0 for channel.

 // Order will be D15 to D8, then D7 to D0.

 bitValue = (0x8000 >> bit) & portValue? 1 : 0;

}

PicoScope 5000 Series (A API) Programmer's Guide 7

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.4 Triggering

PicoScope 5000 Series oscilloscopes can either start collecting data immediately, or be programmed to wait
for a trigger event to occur. In either case, call the function:

· ps5000aSetSimpleTrigger

For more complex trigger setups such as pulse width triggering, call the lower-level trigger functions:

· ps5000aSetTriggerChannelPropertiesV2

· ps5000aSetTriggerChannelConditionsV2

· ps5000aSetTriggerChannelDirectionsV2

To set up triggers on the digital inputs, use this additional function:

· ps5000aSetTriggerDigitalPortProperties

A trigger event can occur when one of the signal or trigger input channels crosses a threshold voltage on
either a rising or a falling edge, or when a more complex time-qualified condition occurs. It is also possible
to combine multiple analog and digital inputs and time-qualified conditions using the logic trigger function.

The driver supports these triggering methods:

· Simple edge (rising or falling with fixed hysteresis)

· Advanced edge (rising or falling with adjustable hysteresis)

· Windowed (entering or leaving a voltage range)

· Pulse width

· Logic (a Boolean function of multiple inputs)

· Delay (wait after trigger and then capture)

· Drop-out (no trigger within a specified time)

· Runt (pulse height between two thresholds)

· Digital (a function of digital inputs; MSO devices only)

The pulse width, delay and drop-out triggering methods additionally require the use of the pulse width
qualifier functions:

· ps5000aSetPulseWidthQualifierProperties

· ps5000aSetPulseWidthQualifierConditions

· ps5000aSetPulseWidthQualifierDirections

Programming with the PicoScope 5000 Series (A API)8

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5 Sampling modes

PicoScope 5000 Series oscilloscopes can capture data using various sampling modes:

· Block mode. In this mode, the scope stores data in its buffer memory and then transfers it to the PC.
When the data has been collected it is possible to examine the data, with an optional downsampling
factor. The data is lost when a new run is started in the same segment, the settings are changed, or the
scope is powered down.

· ETS mode. In this mode, it is possible to increase the effective sampling rate of the scope when
capturing repetitive signals. It is a modified form of block mode.

· Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at
a time with a minimum of delay between captures.

· Streaming mode. In this mode, data is passed directly to the PC without being limited by the size of the
scope's capture memory. This enables long periods of data collection. Streaming mode supports
downsampling and triggering. Maximum data rates are listed in the data sheet for your oscilloscope.

In all sampling modes, the driver writes data to the application's buffers asynchronously and then notifies
you using a callback. This is a call to one of the functions in your own application. When you request data
from the scope, you pass to the driver a pointer to your callback function. The callback function then checks
whether the capture completed successfully or resulted in an error.

The callback will be called asynchronously in its own thread and therefore you must ensure that it is thread-
safe.

For compatibility with programming environments not supporting C callback functions, polling of the driver
is available in block mode. We also supply a wrapper for streaming mode.

Note: The oversampling feature of older PicoScope oscilloscopes has been replaced by

PS5000A_RATIO_MODE_AVERAGE.

PicoScope 5000 Series (A API) Programmer's Guide 9

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.5.1 Block mode

In block mode, the computer prompts a PicoScope 5000 Series oscilloscope to collect a block of data into
its internal memory. When the oscilloscope has collected the whole block, it signals that it is ready and then
transfers the whole block to the computer's memory through the USB port.

· Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The
memory buffer is shared between the enabled channels, so if two channels are enabled, each receives
half the memory. These features are handled transparently by the driver. The block size also depends on

the number of memory segments in use (see ps5000aMemorySegments).

· Sampling rate. A PicoScope 5000 Series oscilloscope can sample at a number of different rates
according to the selected timebase and resolution. In turn, the available timebases may depend on the
combination of channels enabled. See the PicoScope 5000 Series User's Guide for the specifications that

apply to your scope model. You can call ps5000aGetMinimumTimebaseStateless to find the fastest
available timebase.

· Setup time. The driver normally performs a number of setup operations, which can take up to
50 milliseconds, before collecting each block of data. If you need to collect data with the minimum time
interval between blocks, use rapid block mode and avoid calling setup functions between calls to

ps5000aRunBlock, ps5000aStop and ps5000aGetValues.

· Downsampling. When the data has been collected, you can set an optional downsampling factor and
examine the data. Downsampling is a process that reduces the amount of data by combining adjacent
samples. It is useful for zooming in and out of the data without having to repeatedly transfer the entire
contents of the scope's buffer to the PC.

· Segmented memory. The scope's internal memory can be divided into segments so that you can capture

several waveforms in succession. Configure this using ps5000aMemorySegments.

· Data retention. The data is lost when a new run is started in the same segment, the settings are changed,
the resolution is changed, or the scope is powered down or (for flexible power devices) the power source
is changed.

See Using block mode for programming details.

Programming with the PicoScope 5000 Series (A API)10

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5.1.1 Using block mode

You can use block mode with or without aggregation. With aggregation, you need to set up two buffers for
each channel to receive the minimum and maximum values: see rapid block mode example 2 for an
example of this.

Here is the general procedure for reading and displaying data in block mode using a single memory
segment:

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

2a. Set the digital port using ps5000aSetDigitalPort (mixed-signal scopes only).

3. Using ps5000aGetTimebase, select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup function ps5000aSetSimpleTrigger to set up the trigger if required.

4a. Use the trigger setup functions ps5000aSetTriggerDigitalPortProperties and

ps5000aSetTriggerChannelConditionsV2 to set up the digital trigger if required (mixed-signal
scopes only).

5. Start the oscilloscope running using ps5000aRunBlock.

6. Wait until the oscilloscope is ready using the ps5000aBlockReady callback (or poll using

ps5000aIsReady).

7. Use ps5000aSetDataBuffer to tell the driver where your memory buffer is. For greater efficiency
when doing multiple captures, you can call this function outside the loop, after step 4.

8. Transfer the block of data from the oscilloscope using ps5000aGetValues.
9. Display the data.
10. Repeat steps 5 to 9.

11. Stop the oscilloscope using ps5000aStop.
12. Request new views of stored data using different downsampling parameters: see Retrieving stored

data.

13. Close the device using ps5000aCloseUnit.

Note that if you use ps5000aGetValues or ps5000aStop before the oscilloscope is ready, no capture will

be available. In this case ps5000aGetValues would return PICO_NO_SAMPLES_AVAILABLE.

PicoScope 5000 Series (A API) Programmer's Guide 11

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.5.1.2 Asynchronous data retrieval

The ps5000aGetValues function may take a long time to complete if a large amount of data is being
collected. For example, it can take 14 seconds (or several minutes on USB 1.1) to retrieve the full 512
megasamples (in 8-bit mode) from the higher-capacity PicoScope 5000 Series models using a USB 2.0

connection. To avoid hanging the calling thread, it is possible to call ps5000aGetValuesAsync instead.
This immediately returns control to the calling thread, which then has the option of waiting for the data or

calling ps5000aStop to abort the operation.

Programming with the PicoScope 5000 Series (A API)12

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5.2 Rapid block mode

In normal block mode, the PicoScope 5000 Series scopes collect one waveform at a time. You start the
device running, wait until all samples are collected by the device, and then download the data to the PC or
start another run. There is a time overhead of tens of milliseconds associated with starting a run, causing a
gap between waveforms. When you collect data from the device, there is another minimum time overhead
which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the minimum time between
waveforms. It reduces the gap from milliseconds to less than 2 microseconds (on fastest timebase).

See Using rapid block mode for details.

3.5.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you need to set up two buffers
for each channel to receive the minimum and maximum values.

Without aggregation

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

2a. Set the digital port using ps5000aSetDigitalPort (mixed-signal scopes only).
3. Set the number of memory segments equal to or greater than the number of captures required using

ps5000aMemorySegments. Use ps5000aSetNoOfCaptures before each run to specify the
number of waveforms to capture.

4. Using ps5000aGetTimebase, select timebases until the required nanoseconds per sample is
located. This will indicate the number of samples per channel available for each segment.

5. Use the trigger setup function ps5000aSetSimpleTrigger to set up the trigger if required.

6. Start the oscilloscope running using ps5000aRunBlock.
THEN EITHER

7a. To obtain data before rapid block capture has finished, call ps5000aStop and then

ps5000aGetNoOfCaptures to find out how many captures were completed.
OR

7b. Wait until the oscilloscope is ready using ps5000aIsReady.
OR

7c. Wait on the callback function.

8. Use ps5000aSetDataBuffer to tell the driver where your memory buffers are. Call the function
once for each channel/segment combination for which you require data. For greater efficiency when
doing multiple captures, you can call this function outside the loop, after step 5.

9. Transfer the blocks of data from the oscilloscope using ps5000aGetValuesBulk (or

ps5000aGetValues to retrieve one buffer at a time). These functions stop the oscilloscope.
10. Retrieve the time offset for each data segment using

ps5000aGetValuesTriggerTimeOffsetBulk64.

10a. Optionally retrieve trigger time stamps using ps5000aGetTriggerInfoBulk.
11. Display the data.
12. Repeat steps 6 to 11 if necessary.

13. Call ps5000aStop (usually unnecessary as the scope stops automatically in most cases, but
recommended as a precaution).

14. Close the device using ps5000aCloseUnit.

PicoScope 5000 Series (A API) Programmer's Guide 13

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 7 above, then proceed as follows:

8a. Call ps5000aSetDataBuffer or (ps5000aSetDataBuffers) to set up one pair of buffers for
every waveform segment required.

9a. Call ps5000aGetValuesBulk for each pair of buffers.
10a. Retrieve the time offset for each data segment using

ps5000aGetValuesTriggerTimeOffsetBulk64.

10b. Optionally retrieve trigger time stamps using ps5000aGetTriggerInfoBulk.

Continue from step 11 above.

Programming with the PicoScope 5000 Series (A API)14

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device

· Channels

· Trigger

· Number of memory segments (this should be equal or more than the no of captures required)

// Set the number of waveforms to MAX_WAVEFORMS

ps5000aSetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;

ps5000aRunBlock

(

handle,

0, // noOfPreTriggerSamples

10000, // noOfPostTriggerSamples

1, // timebase to be used

&timeIndisposedMs,

0, // segment index

lpReady,

&pParameter

);

Comment: these variables have been set as an example and can be any valid value. pParameter will be set

true by your callback function lpReady.

while (!pParameter) Sleep (0);

int16_t buffer[PS5000A_MAX_CHANNELS][MAX_WAVEFORMS][MAX_SAMPLES];

for (int32_t i = 0; i < 20; i++)

{

for (int32_t c = PS5000A_CHANNEL_A; c <= PS5000A_CHANNEL_B; c++)

{

ps5000aSetDataBuffer

(

handle,

c,

buffer[c][i],

MAX_SAMPLES,

i

PS5000A_RATIO_MODE_NONE

);

}

}

PicoScope 5000 Series (A API) Programmer's Guide 15

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

Comments: buffer has been created as a three-dimensional 16-bit integer array, which will contain 1000

samples as defined by MAX_SAMPLES. There are only 20 buffers set, but it is possible to set up to the

number of captures you have requested. PS5000A_RATIO_MODE_NONE can be substituted for

PS5000A_RATIO_MODE_AGGREGATE, PS5000A_RATIO_MODE_DECIMATE, or

PS5000A_RATIO_MODE_AVERAGE.

int16_t overflow[MAX_WAVEFORMS];

ps5000aGetValuesBulk

(

handle,

&noOfSamples, // set to MAX_SAMPLES on entering the function

10, // fromSegmentIndex

19, // toSegmentIndex

1, // downsampling ratio

PS5000A_RATIO_MODE_NONE, // downsampling ratio mode

overflow // indices 10 to 19 will be populated

)

Comments: the number of samples could be up to noOfPreTriggerSamples +

noOfPostTriggerSamples, the values set in ps5000aRunBlock. The samples are always returned from

the first sample taken, unlike the ps5000aGetValues function which allows the sample index to be set.

The above segments start at 10 and finish at 19 inclusive. It is possible for the fromSegmentIndex to

wrap around to the toSegmentIndex, by setting the fromSegmentIndex to 98 and the

toSegmentIndex to 7.

int64_t times[MAX_WAVEFORMS];

PS5000A_TIME_UNITS timeUnits[MAX_WAVEFORMS];

ps5000aGetValuesTriggerTimeOffsetBulk64

(

handle,

times, // indices 10 to 19 will be populated

timeUnits, // indices 10 to 19 will be populated

10, // fromSegmentIndex, inclusive

19, // toSegmentIndex, inclusive

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for the

fromSegmentIndex to wrap around to the toSegmentIndex, if the fromSegmentIndex is set to 98 and

the toSegmentIndex to 7.

Programming with the PicoScope 5000 Series (A API)16

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5.2.3 Rapid block mode example 2: using aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device

· Channels

· Trigger

· Number of memory segments (this should be equal or more than the number of captures required)

// Set the number of waveforms to MAX_WAVEFORMS

ps5000aSetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;

ps5000aRunBlock

(

handle,

0, // noOfPreTriggerSamples,

1000000, // noOfPostTriggerSamples,

1, // timebase to be used,

&timeIndisposedMs,

lpReady,

&pParameter

);

Comments: the set-up for running the device is exactly the same whether or not you use aggregation when
you retrieve the samples.

for (int32_t segment = 10; segment < 20; segment++)

{

for (int32_t c = PS5000A_CHANNEL_A; c <= PS5000A_CHANNEL_D; c++)

{

ps5000aSetDataBuffers

(

handle,

c,

bufferMax[c],

bufferMin[c]

MAX_SAMPLES

1,

PS5000A_RATIO_MODE_AGGREGATE

);

}

ps5000aGetValues

(

handle,

0,

&noOfSamples, // set to MAX_SAMPLES on entering

1000,

downSampleRatioMode, // set to RATIO_MODE_AGGREGATE

index,

PicoScope 5000 Series (A API) Programmer's Guide 17

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

overflow

);

ps5000aGetTriggerTimeOffset64

(

handle,

&time,

&timeUnits,

index

)

}

Each waveform is retrieved one at a time from the driver, with an aggregation of 1000. Since only one
waveform is retrieved at a time, you only need to set up one pair of buffers: one for the maximum samples
and one for the minimum samples. Again, the buffer sizes are 1000 samples. For greater efficiency you can

use ps5000aGetValuesBulk to retrieve the values in one go.

Programming with the PicoScope 5000 Series (A API)18

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing repetitive signals. It is a

modified form of block mode, and is controlled by the trigger functions and the ps5000aSetEts function.

· Overview. ETS works by capturing several cycles of a repetitive waveform, then combining them to
produce a composite waveform that has a higher effective sampling rate than the individual captures.
The scope hardware accurately measures the delay, which is a small fraction of a single sampling
interval, between each trigger event and the subsequent sample. The driver then shifts each capture
slightly in time and overlays them so that the trigger points are exactly lined up. The result is a larger set
of samples spaced by a small fraction of the original sampling interval. The maximum effective sampling
rates that can be achieved with this method are listed in the User's Guide for the scope device.

· Trigger stability. Because of the high sensitivity of ETS mode to small time differences, the trigger must
be set up to provide a stable waveform that varies as little as possible from one capture to the next.

· Callback. ETS mode calls the ps5000aBlockReady callback function when a new waveform is ready

for collection. Call ps5000aGetValues to retrieve the waveform.

Applicability

Available in block mode only.
Not suitable for one-shot (non-repetitive) signals.
Aggregation is not supported.
Edge-triggering only.

Auto trigger delay (autoTriggerMilliseconds) is ignored.
Cannot be used when MSO digital ports are enabled.
Available in 8-bit resolution mode only.
On PicoScope 5000D Series scopes, available on channel A only.

PicoScope 5000 Series (A API) Programmer's Guide 19

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.5.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a single memory segment:

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select analog channel ranges and AC/DC coupling using ps5000aSetChannel.

3. Use ps5000aGetTimebase to verify the number of samples to be collected.

4. Set up ETS using ps5000aSetEts.

5. Use the trigger setup function ps5000aSetSimpleTrigger to set up the trigger.

6. Start the oscilloscope running using ps5000aRunBlock.

7. Wait until the oscilloscope is ready using the ps5000aBlockReady callback (or poll using

ps5000aIsReady).

8. Use ps5000aSetDataBuffer to tell the driver where to store sampled data.

8a. Use ps5000aSetEtsTimeBuffer or ps5000aSetEtsTimeBuffers to tell the driver where to
store sample times.

9. Transfer the block of data from the oscilloscope using ps5000aGetValues.
10. Display the data.
11. While you want to collect updated captures, repeat steps 7 to 10.
12. Repeat steps 6 to 11.

13. Stop the oscilloscope using ps5000aStop.

14. Close the device using ps5000aCloseUnit.

Programming with the PicoScope 5000 Series (A API)20

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.5.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when using block mode.
Streaming mode supports downsampling and triggering, while providing fast streaming at up to 125 MS/s (8
ns per sample) when one channel is active, depending on the computer's performance. This makes it
suitable for high-speed data acquisition, allowing you to capture long data sets limited only by the
computer's memory.

· Aggregation. The driver returns aggregated readings while the device is streaming. If aggregation is set
to 1 then only one buffer is used per channel. When aggregation is set above 1 then two buffers
(maximum and minimum) per channel are used.

· Memory segmentation. The memory can be divided into segments to reduce the latency of data
transfers to the PC. However, this increases the risk of losing data if the PC cannot keep up with the
device's sampling rate.

See Using streaming mode for programming details.

3.5.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using a single memory
segment:

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channels, ranges and AC/DC coupling using ps5000aSetChannel.

2a. Set the digital port using ps5000aSetDigitalPort (mixed-signal scopes only).

3. Use the trigger setup function ps5000aSetSimpleTrigger to set up the trigger if required.

3a. Use the trigger setup functions ps5000aSetTriggerDigitalPortProperties and

ps5000aSetTriggerChannelConditions to set up the digital trigger if required (mixed-signal
scopes only).

4. Call ps5000aSetDataBuffer (or ps5000aSetDataBuffers if you will be using aggregation) to
tell the driver where your data buffer is.

5. Start the oscilloscope running (with aggregation if required) using ps5000aRunStreaming. In this

example we set autostop = 1 to stop the oscilloscope collecting data when it has retrieved the
requested number of samples.

6. Call ps5000aGetStreamingLatestValues to get data. Repeat until enough data is collected.

7. Process data returned to your application's function. This example is using autoStop = 1, so after
the driver has received all the data points requested by the application, it stops the device streaming.

8. Call ps5000aStop. This is necessary even when autoStop = 1.
9. Optionally, request new views of stored data using different downsampling parameters: see Retrieving

stored data.

10. Close the device using ps5000aCloseUnit.

PicoScope 5000 Series (A API) Programmer's Guide 21

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.5.5 Retrieving stored data

You can collect data from the ps5000a driver with a different downsampling factor when

ps5000aRunBlock or ps5000aRunStreaming has already been called and has successfully captured all

the data. Use ps5000aGetValuesAsync.

Programming with the PicoScope 5000 Series (A API)22

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.6 Timebases

The timebase is an integer that encodes the sampling interval of the oscilloscope. The API allows you to
select any available* timebase down to the minimum sampling interval of your oscilloscope. The available
timebases allow slow enough sampling in block mode to overlap the streaming sample intervals, so that you
can make a smooth transition between block mode and streaming mode.

Convert a given timebase to a sampling interval using ps5000aGetTimebase. Find the fastest available

timebase in a given mode using ps5000aGetMinimumTimebaseStateless.

Accepted timebases for each resolution mode are as follows:

8-bit mode

Timebase (n) Sampling interval formula Sampling interval Notes

0

2n / 1,000,000,000

1 ns Only one channel enabled

1 2 ns

2 4 ns

3
...
232–1

(n–2) / 125,000,000
8 ns
...
~ 34.36 s

12-bit mode

Timebase (n)** Sampling interval formula Sampling interval Notes

1

2(n–1) / 500,000,000

2 ns Only one channel enabled

2 4 ns

3 8 ns

4
...
232–2

(n–3) / 62,500,000
16 ns
...
~ 68.72 s

14-bit mode

Timebase (n)† Sampling interval formula Sampling interval Notes

3 1 / 125,000,000
8 ns 5000A/B Series: only one analog channel enabled.

5000D Series: up to 4 analog channels or digital
ports enabled.

4
...
232–1

(n–2) / 125,000,000
16 ns
...
~ 34.36 s

15-bit mode
PicoScope 5000D MSO Series: any number of digital ports can be enabled without affecting the timebase.

Timebase (n)† Sampling interval formula Sampling interval Notes

3 1 / 125,000,000 8 ns Up to two analog channels enabled.

4
...
232–1

(n–2) / 125,000,000
16 ns
...
~ 34.36 s

16-bit mode
PicoScope 5000D MSO Series: any number of digital ports can be enabled without affecting the timebase.

Timebase (n)

‡

Sampling interval formula Sampling interval Notes

4 1 / 62,500,000 16 ns Only one analog channel enabled.

5
...
232–2

(n–3) / 62,500,000
32 ns
...
~ 68.72 s

PicoScope 5000 Series (A API) Programmer's Guide 23

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

* The fastest available sampling rate depends on the combination of channels and ports enabled, the
sampling mode, the ETS mode and the power supply mode. Please refer to the oscilloscope data
sheet for sampling rate specifications. In streaming mode, the speed of the USB port may affect the
rate of data transfer.

** Timebase 0 is not available in 12-bit resolution mode.

† Timebases 0, 1 and 2 are not available in 14 and 15-bit resolution modes.
‡ Timebases 0, 1, 2 and 3 are not available in 16-bit resolution mode.

ETS mode
In ETS mode the sample time is not set according to the above tables, but is instead calculated and returned

by ps5000aSetEts.

Programming with the PicoScope 5000 Series (A API)24

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

3.7 Power options

The 5000A/B Series oscilloscopes allow you to choose from two different methods of powering your device:
using a standard Pico USB cable and the power supply provided, or using a double-headed Pico USB cable
(available separately) to obtain power from two powered USB ports. For 4-channel devices, the second
method is available only in 2-channel mode.

The 5000D Series 4-channel scopes also have a choice of two power sources. When one or two channels
are enabled, you can power the scope from a USB port that supplies at least 1200 mA or you can use the AC
adaptor supplied. If you do not have a USB port capable of supplying 1200 mA, you can instead use a
double-headed USB cable, available separately, connected to two USB ports. When three or four channels
are enabled, you must use the AC adaptor.

If the power source is changed (i.e. AC adaptor connected or disconnected) while the oscilloscope is in
operation, the device will restart automatically and any unsaved data will be lost.

For further information on these options, refer to the documentation included with your device.

Power options functions
The following functions control the power options:

· ps5000aChangePowerSource

· ps5000aCurrentPowerSource

If you call ps5000aOpenUnit without the power supply connected, the function returns

PICO_POWER_SUPPLY_NOT_CONNECTED and passes back a valid handle argument. If you want the

device to run on USB power only, you can then instruct the driver by passing this handle to

ps5000aChangePowerSource.

If the power supply is connected or disconnected during use, the driver will return the relevant status code

and you must then call ps5000aChangePowerSource to continue running the scope.

The 2-channel 5000D and 5000D MSO scopes return PICO_USB3_0_DEVICE_NON_USB3_0_PORT when
connected to a non-USB 3.0 port.

PicoScope 5000 Series (A API) Programmer's Guide 25

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

3.8 Combining several oscilloscopes

It is possible to collect data using up to 64 PicoScope 5000 Series oscilloscopes at the same time,
depending on the capabilities of the PC. Each oscilloscope must be connected to a separate USB port. The

ps5000aOpenUnit function assigns a handle (a device identifier) to an oscilloscope. Almost all the other
functions require this handle for oscilloscope identification. For example, to collect data from two
oscilloscopes at the same time:

CALLBACK ps5000aBlockReady(...)

// Define callback function specific to application

ps5000aOpenUnit(&handle1)

ps5000aOpenUnit(&handle2)

ps5000aSetChannel(handle1) // Set up device 1

ps5000aRunBlock(handle1)

ps5000aSetChannel(handle2) // Set up device 2

ps5000aRunBlock(handle2)

// Data will be stored in buffers and application notified using a callback.

// The callback arguments include the device handle, which identifies the

// device that generated the data.

ready = false

while not ready

ready = handle1_ready

ready &= handle2_ready

API functions26

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4 API functions

The ps5000a API exports the following functions for you to use in your own applications. They are all
exported with both decorated and undecorated names.

4.1 ps5000aChangePowerSource – select USB or AC
adaptor power

PICO_STATUS ps5000aChangePowerSource

(

int16_t handle,

PICO_STATUS powerstate

)

This function selects the power supply mode. If USB power is required, you must explicitly allow it by calling
this function. You must also call this function if the AC power adapter is connected or disconnected during

use. If you change the power source to PICO_POWER_SUPPLY_NOT_CONNECTED and either of channels C
and D is currently enabled, they will be switched off. If a trigger is set using channel C or D, the trigger
settings for those channels will also be removed.

Applicability

All modes.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

powerstate, the required state of the unit; one of the following:

PICO_POWER_SUPPLY_CONNECTED – to run the device on AC adaptor power

PICO_POWER_SUPPLY_NOT_CONNECTED – to run the device on USB power

PICO_USB3_0_DEVICE_NON_USB3_0_PORT – for 2-channel 5000D and 5000D MSO devices

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 27

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.2 ps5000aChannelCombinationsStateless – find out
which channels can be used

PICO_STATUS ps5000aChannelCombinationsStateless

(

int16_t handle,

PS5000A_CHANNEL_FLAGS * channelOrPortFlagsCombinations,

uint32_t * nChannelCombinations,

PS5000A_DEVICE_RESOLUTION resolution,

uint32_t timebase,

int16_t hasDcPowerSupplyConnected

)

This function accepts a proposed device configuration and returns a list of available channel combinations
that can be used under that configuration. It does not write the configuration to the device.

The function is designed to be called twice. First, call with channelOrPortFlagsCombinations = NULL

and note the value of nChannelCombinations that the function returns. Then create an array with space

for this number of PS5000A_CHANNEL_FLAGS values and call the function again with

channelOrPortFlagsCombinations pointing to the array. On the second call, the function will populate

the array with PS5000A_CHANNEL_FLAGS values.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* channelOrPortFlagsCombinations, on exit, an array of possible channel and port combinations –

see PS5000A_CHANNEL_FLAGS. Set to NULL to query the number of combinations without returning a list
of values.

* nChannelCombinations, on entry and exit, the length of the channelOrPortFlagCombinations
array.

resolution, the proposed hardware resolution – see PS5000A_DEVICE_RESOLUTION.

timebase, the proposed timebase number, as passed to ps5000aGetTimebase.

hasDcPowerSupplyConnected, whether the proposed configuration uses the external AC adaptor or not:

0 = not using AC adaptor
1 = using AC adaptor

Returns

PICO_OK or other code from PicoStatus.h

API functions28

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.2.1 PS5000A_CHANNEL_FLAGS enumerated type

typedef enum enPS5000AChannelFlags

{

PS5000A_CHANNEL_A_FLAGS = 1,

PS5000A_CHANNEL_B_FLAGS = 2,

PS5000A_CHANNEL_C_FLAGS = 4,

PS5000A_CHANNEL_D_FLAGS = 8,

PS5000A_PORT0_FLAGS = 65536,

PS5000A_PORT1_FLAGS = 131072,

PS5000A_PORT2_FLAGS = 262144,

PS5000A_PORT3_FLAGS = 524288

} PS5000A_CHANNEL_FLAGS;

These single-bit values identify channels. They can be ORed together to indicate channel and port
combinations.

Applicability

Calls to ps5000aChannelCombinationsStateless

Values

PS5000A_CHANNEL_A_FLAGS – analog channel A

PS5000A_CHANNEL_B_FLAGS – analog channel B

PS5000A_CHANNEL_C_FLAGS – analog channel C (4-channel models only)

PS5000A_CHANNEL_D_FLAGS – analog channel D (4-channel models only)

PS5000A_PORT0_FLAGS – digital port 0 (inputs D0–D7; MSO models only)

PS5000A_PORT1_FLAGS – digital port 1 (inputs D8–D15; MSO models only)

PicoScope 5000 Series (A API) Programmer's Guide 29

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.3 ps5000aCloseUnit – close a scope device

PICO_STATUS ps5000aCloseUnit

(

int16_t handle

)

This function shuts down the PicoScope 5000 Series oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier that was returned by ps5000aOpenUnit. When ps5000aCloseUnit

returns, this value of handle will no longer be valid.

Returns

PICO_OK or other code from PicoStatus.h

API functions30

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.4 ps5000aCurrentPowerSource – indicate the current
power state of the device

PICO_STATUS ps5000aCurrentPowerSource

(

int16_t handle

)

This function returns the current power state of the device.

Applicability

All modes.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

Returns

PICO_INVALID_HANDLE – handle of the device is not recognized.

PICO_POWER_SUPPLY_CONNECTED – device is powered by the AC adaptor.

PICO_POWER_SUPPLY_NOT_CONNECTED – device is powered by the USB cable.

PICO_USB3_0_DEVICE_NON_USB3_0_PORT – a 2-channel 5000D or 5000D MSO model is connected to a
USB 2.0 port.

PICO_OK – the device has two channels and PICO_USB3_0_DEVICE_NON_USB3_0_PORT does not apply.

PicoScope 5000 Series (A API) Programmer's Guide 31

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.5 ps5000aEnumerateUnits – find all connected
oscilloscopes

PICO_STATUS ps5000aEnumerateUnits

(

int16_t * count,

int8_t * serials,

int16_t * serialLth

)

This function counts the number of PicoScope 5000 Series units connected to the computer, and returns a
list of serial numbers as a string. Note that this function will only detect devices that are not yet being
controlled by an application.

Applicability

All modes

Arguments

* count, on exit, the number of PicoScope 5000 Series units found.

* serials, on exit, a list of serial numbers separated by commas and terminated by a final null. Example:

AQ005/139,VDR61/356,ZOR14/107. Can be NULL on entry if serial numbers are not required.

* serialLth, on entry, the length of the buffer pointed to by serials; on exit, the length of the string

written to serials. Includes the terminating null character.

Returns

PICO_OK or other code from PicoStatus.h

API functions32

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.6 ps5000aFlashLed – flash the front-panel LED

PICO_STATUS ps5000aFlashLed

(

int16_t handle,

int16_t start

)

This function flashes the LED on the front of the scope without blocking the calling thread. Calls to

ps5000aRunStreaming and ps5000aRunBlock cancel any flashing started by this function. It is not
possible to set the LED to be constantly illuminated, as this state is used to indicate that the scope has not
been initialized.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

start, the action required:

< 0 : flash the LED indefinitely.

 0 : stop the LED flashing.

> 0 : flash the LED start times. If the LED is already flashing on entry to this function, the flash

count will be reset to start.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 33

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.7 ps5000aGetAnalogueOffset – query the permitted
analog offset range

PICO_STATUS ps5000aGetAnalogueOffset

(

int16_t handle,

PS5000A_RANGE range,

PS5000A_COUPLING coupling,

float * maximumVoltage,

float * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a specific voltage range.

Applicability

All models

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

range, the voltage range to be used when gathering the min and max information. See PS5000A_RANGE.

coupling, the type of AC/DC coupling used. See PS5000A_COUPLING.

maximumVoltage, a pointer to a float, an out parameter set to the maximum voltage allowed for the

range, may be NULL.

minimumVoltage, a pointer to a float, an out parameter set to the minimum voltage allowed for the range,

may be NULL.

If both maximumVoltage and minimumVoltage are set to NULL, the driver returns

PICO_NULL_PARAMETER.

Returns

PICO_OK or other code from PicoStatus.h

API functions34

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.7.1 PS5000A_RANGE enumerated type

typedef enum enPS5000ARange

{

 PS5000A_10MV,

 PS5000A_20MV,

 PS5000A_50MV,

 PS5000A_100MV,

 PS5000A_200MV,

 PS5000A_500MV,

 PS5000A_1V,

 PS5000A_2V,

 PS5000A_5V,

 PS5000A_10V,

 PS5000A_20V,

 PS5000A_50V,

 PS5000A_MAX_RANGES

} PS5000A_RANGE;

These values specify all the possible voltage ranges to which an analog input channel can be set. Each

range is bipolar, so for example the PS5000A_10MV

Applicability

Calls to ps5000aGetAnalogueOffset etc.

Values

PS5000A_10MV ±10 mV range

...

PS5000A_20V ±20 V range

PS5000A_50V not available

4.7.2 PS5000A_COUPLING enumerated type

typedef enum enPS5000ACoupling

{

 PS5000A_AC,

 PS5000A_DC

} PS5000A_COUPLING;

These values specify the two possible input coupling modes for each analog channel.

Applicability

Calls to ps5000aGetAnalogueOffset etc.

Arguments

PS5000A_AC – 1 megohm impedance, AC coupling. The channel accepts input frequencies from about 1

PS5000A_DC – 1 megohm impedance, DC coupling. The scope accepts all input frequencies from zero
(DC) up to its analog bandwidth.

PicoScope 5000 Series (A API) Programmer's Guide 35

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.8 ps5000aGetChannelInformation – query which
ranges are available on a device

PICO_STATUS ps5000aGetChannelInformation

(

int16_t handle,

PS5000A_CHANNEL_INFO info,

int32_t probe,

int32_t ranges,

int32_t length,

int32_t channels

)

This function queries which ranges are available on a scope device.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

info, the type of information required: see PS5000A_CHANNEL_INFO. Only one type is available:

PS5000A_CI_RANGES – input voltage ranges

probe, not used, must be set to 0.

* ranges, an array that will be populated with available PS5000A_RANGE values for the given info. If

NULL, length is set to the number of ranges available.

* length, on input: the length of the ranges array; on output: the number of elements written to the ranges
array.

channels, the channel for which the information is required.

Returns

PICO_OK or other code from PicoStatus.h

4.8.1 PS5000A_CHANNEL_INFO enumerated type

typedef enum enPS5000AChannelInfo

{

 PS5000A_CI_RANGES,

} PS5000A_CHANNEL_INFO;

Only one type of channel information—ranges—is available for the 5000 Series oscilloscopes.

Applicability

Calls to ps5000aGetChannelInformation.

Values

PS5000A_CI_RANGES – obtain range information.

API functions36

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.9 ps5000aGetDeviceResolution – retrieve the
resolution the device will run in

PICO_STATUS ps5000aGetDeviceResolution

(

int16_t handle,

PS5000A_DEVICE_RESOLUTION * resolution

)

This function retrieves the resolution the specified device will run in.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* resolution, returns the resolution of the device.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 37

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.10 ps5000aGetMaxDownSampleRatio – query the
aggregation ratio for data

PICO_STATUS ps5000aGetMaxDownSampleRatio

(

int16_t handle,

uint32_t noOfUnaggregatedSamples,

uint32_t * maxDownSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex

)

This function returns the maximum downsampling ratio that can be used for a given number of samples in a
given downsampling mode.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

noOfUnaggregatedSamples, the number of unprocessed samples to be downsampled

* maxDownSampleRatio, the maximum possible downsampling ratio output

downSampleRatioMode, the downsampling mode. See ps5000aGetValues

segmentIndex, the memory segment where the data is stored

Returns

PICO_OK or other code from PicoStatus.h

API functions38

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.11 ps5000aGetMaxSegments – query the maximum
number of segments

PICO_STATUS ps5000aGetMaxSegments

(

int16_t handle,

uint32_t * maxsegments

)

This function returns the maximum number of segments allowed for the opened device. Refer to

ps5000aMemorySegments for specific figures.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

maxsegments, on exit, the maximum number of segments allowed.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 39

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.12 ps5000aGetMinimumTimebaseStateless – find
fastest available timebase

PICO_STATUS ps5000aGetMinimumTimebaseStateless

(

int16_t handle,

PS5000A_CHANNEL_FLAGS enabledChannelOrPortFlags,

uint32_t * timebase,

double * timeInterval,

PS5000A_DEVICE_RESOLUTION resolution

)

This function returns the fastest available timebase for the proposed device configuration. It does not write
the proposed configuration to the device.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

enabledChannelOrPortFlags, the proposed combination of enabled channels and ports. To specify

multiple channels and ports, use the bitwise-OR of the relevant PS5000A_CHANNEL_FLAGS values.

* timebase, on exit, the shortest timebase available.

* timeInterval, on exit, the sampling interval, in seconds, corresponding to the stated timebase.

resolution, the resolution mode in which you propose to operate the oscilloscope.

Returns

PICO_OK or other code from PicoStatus.h

API functions40

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.13 ps5000aGetNoOfCaptures – find out how many
captures are available

PICO_STATUS ps5000aGetNoOfCaptures

(

int16_t handle,

uint32_t * nCaptures

)

This function returns the number of captures the device has made in rapid block mode, since you called

ps5000aRunBlock. You can call ps5000aGetNoOfCaptures during device capture, after collection has

completed or after interrupting waveform collection by calling ps5000aStop. The returned value

(nCaptures) can then be used to iterate through the number of segments using ps5000aGetValues, or in

a single call to ps5000aGetValuesBulk, where it is used to calculate the toSegmentIndex parameter.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* nCaptures, output: the number of available captures that has been collected from calling

ps5000aRunBlock.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 41

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.14 ps5000aGetNoOfProcessedCaptures – query
number of captures processed

PICO_STATUS ps5000aGetNoOfProcessedCaptures

(

int16_t handle,

uint32_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid block mode. It
enables your application to start processing captured data while the driver is still transferring later captures
from the device to the computer.

The function returns the number of captures the driver has processed since you called ps5000aRunBlock.

It is for use in rapid block mode, alongside the ps5000aGetValuesOverlappedBulk function, when the

driver is set to transfer data from the device automatically as soon as the ps5000aRunBlock function is

called. You can call ps5000aGetNoOfProcessedCaptures during device capture, after collection has

completed or after interrupting waveform collection by calling ps5000aStop.

The returned value (nProcessedCaptures) can then be used to iterate through the number of segments

using ps5000aGetValues, or in a single call to ps5000aGetValuesBulk, where it is used to calculate

the toSegmentIndex parameter.

When capture is stopped

If nProcessedCaptures = 0, you will also need to call ps5000aGetNoOfCaptures, in order to determine

how many waveform segments were captured, before calling ps5000aGetValues or

ps5000aGetValuesBulk.

Applicability

Rapid block mode, using ps5000aGetValuesOverlapped

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* nProcessedCaptures, output: the number of available captures that has been collected from calling

ps5000aRunBlock.

Returns

PICO_OK or other code from PicoStatus.h

API functions42

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.15 ps5000aGetStreamingLatestValues – get streaming
data while scope is running

PICO_STATUS ps5000aGetStreamingLatestValues

(

int16_t handle,

ps5000aStreamingReady lpPs5000aReady,

void * pParameter

)

This function instructs the driver to return the next block of values to your ps5000aStreamingReady

callback function. You must have previously called ps5000aRunStreaming beforehand to set up
streaming.

In most cases the block of values returned will not be enough to fill the data buffer, so you will need to call

ps5000aGetStreamingLatestValues repeatedly until you have obtained the required number of
samples. The timing between calls to the function depends on your application – it should be fast enough to
avoid running out data but not so fast that it wastes processor time.

Applicability

Streaming mode only

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

lpPs5000AReady, a pointer to your ps5000aStreamingReady callback function.

* pParameter, a void pointer that will be passed to the ps5000aStreamingReady callback function.
The callback function may optionally use this pointer to return information to the application.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 43

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.16 ps5000aGetTimebase – get properties of the
selected timebase

PICO_STATUS ps5000aGetTimebase

(

int16_t handle,

uint32_t timebase,

int32_t noSamples,

int32_t * timeIntervalNanoseconds,

int32_t * maxSamples,

uint32_t segmentIndex

)

This function calculates the sampling rate and maximum number of samples for a given timebase under the
specified conditions. The result will depend on the number of channels enabled by the last call to

ps5000aSetChannel.

This function is provided for use with programming languages that do not support the float data type. The

value returned in the timeIntervalNanoseconds argument is restricted to integers. If your programming

language supports the float type, then we recommend that you use ps5000aGetTimebase2 instead.

To use ps5000aGetTimebase or ps5000aGetTimebase2, first estimate the timebase number that you
require using the information in the timebase guide. Next, call one of these functions with the timebase that

you have just chosen and verify that the timeIntervalNanoseconds argument that the function returns
is the value that you require. You may need to iterate this process until you obtain the time interval that you
need.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

timebase, see timebase guide

noSamples, the number of samples required.

* timeIntervalNanoseconds, on exit, the time interval between readings at the selected timebase.
Use NULL if not required.

* maxSamples, on exit, the maximum number of samples available. The scope reserves some memory
for internal overheads and this may vary depending on the number of segments, number of channels
enabled, and the timebase chosen. Use NULL if not required.

segmentIndex, the index of the memory segment to use.

Returns

PICO_OK or other code from PicoStatus.h

API functions44

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.17 ps5000aGetTimebase2 – get properties of the
selected timebase

PICO_STATUS ps5000aGetTimebase2

(

int16_t handle,

uint32_t timebase,

int32_t noSamples,

float * timeIntervalNanoseconds,

int32_t * maxSamples,

uint32_t segmentIndex

)

This function is an upgraded version of ps5000aGetTimebase, and returns the time interval as a float

rather than an int32_t. This allows it to return sub-nanosecond time intervals. See

ps5000aGetTimebase for a full description.

Applicability

All modes

Arguments

handle, timebase, noSamples, see ps5000aGetTimebase.

* timeIntervalNanoseconds, a pointer to the time interval between readings at the selected
timebase. If a null pointer is passed, nothing will be written here.

* maxSamples, segmentIndex, see ps5000aGetTimebase.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 45

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.18 ps5000aGetTriggerInfoBulk – get trigger
timestamps

PICO_STATUS ps5000aGetTriggerInfoBulk

(

int16_t handle,

PS5000A_TRIGGER_INFO * triggerInfo,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

ps5000aGetTriggerInfoBulk is used to retrieve information about the trigger point in one or more

segments of captured data, in the form of a PS5000A_TRIGGER_INFO structure or array of structures.

This function can be used with ps5000aGetValues, ps5000aGetValuesBulk,

ps5000aGetValuesAsync, ps5000aGetValuesOverlapped and

ps5000aGetValuesOverlappedBulk. Although it is primarily intended for use with

ps5000aTriggerWithinPreTriggerSamples, it can be used with any block mode capture when ETS is
off and trigger delay is 0.

This function can retrieve trigger information for more than one segment at once by using

fromSegmentIndex and toSegmentIndex. These values are both inclusive so, to collect details for a

single segment, set fromSegmentIndex equal to toSegmentIndex.

Applicability

Block mode, rapid block mode.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

triggerInfo, a pointer to one or more PS5000A_TRIGGER_INFO objects. When collecting details for a
single segment , this parameter should be a pointer to a single object. When collecting details for more than
one segment the parameter should be a pointer to an array of objects, of length greater than or equal to the

number of PS5000A_TRIGGER_INFO elements requested.

fromSegmentIndex, the zero-based number of the first segment of interest.

toSegmentIndex, the zero-based number of the last segment of interest. If fromSegmentIndex >

toSegmentIndex, the segment index will wrap from the last segment back to 0.

Returns

PICO_OK or other code from PicoStatus.h

If the function return status is PICO_OK, all the triggerInfo status codes will be PICO_OK or

PICO_DEVICE_TIME_STAMP_RESET.

If the return status is any other status code, check the individual element status codes as some of the

elements could be PICO_OK and others could show an error (for example, if you request trigger information
for a range of segments but have not captured data to some of them).

API functions46

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.18.1 PS5000A_TRIGGER_INFO structure

typedef struct tPS5000ATriggerInfo

{

PICO_STATUS status;

uint32_t segmentIndex;

uint32_t triggerIndex;

int64_t triggerTime;

int16_t timeUnits;

int16_t reserved0;

uint64_t timeStampCounter;

} PS5000A_TRIGGER_INFO;

This structure contains the trigger timestamp information for the specified buffer segment.

Applicability

Calls to ps5000aGetTriggerInfoBulk.
Rapid block mode only.

Elements

status, a status code indicating success or failure for the segment.

segmentIndex, a zero-based index identifying the segment.

triggerIndex, the index of the trigger point measured in samples within the captured data, with the first
sample being index 0. In ordinary triggering this is equal to the number of pre-trigger samples requested.

When using ps5000aTriggerWithinPreTriggerSamples this element is used to find the location of
the trigger point, which may fall anywhere within the pre-trigger samples.

triggerTime, the trigger offset time as returned by ps5000aGetTriggerTimeoffset or

ps5000aGetTriggerTimeoffset64. These elements are included in this structure to avoid the need to
call those functions separately.

timeUnits, the unit of time in which triggerTime is expressed. See PS5000A_TIME_UNITS.

reserved0, not used.

timeStampCounter, the number of sample intervals between the trigger point of this segment and the
previous segment. This allows you to determine the time interval between the trigger points of captures
within a single rapid block run: see Timestamping.

4.18.2 Time stamping

The timeStampCounter parameter in the PS5000A_TRIGGER_INFO structure allows you to determine
the time interval between the trigger points of captures within a single rapid block run. Only events causing
the scope to trigger are timestamped. Additional trigger events occurring within a capture or in the trigger
rearm time between captures cannot be timestamped.

To get the offset between the respective segment trigger points, in sample intervals at the current timebase,

subtract the timeStampCounter for each segment from the previous segment’s timestamp. The
timestamps are accurate to one sample interval at the current timebase.

PicoScope 5000 Series (A API) Programmer's Guide 47

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

The timestamp of the first segment in any run is arbitrary, and is only provided to allow you to calculate the
offset of subsequent segments. The timestamp counter may either maintain or reset its value between runs,
and your code must not rely on particular behavior in this respect but should instead check the status code.

The status code returned for each segment indicates whether the timestamp is valid. For example, if you set
up 10 segments in memory and then carry out two rapid block runs of 5 captures each, the status codes for

segments 0 and 5 may have the bit-flag PICO_DEVICE_TIME_STAMP_RESET set, indicating that the
timestamp for that segment is arbitrary. The other segments will not have this flag set, indicating that the
timestamp is valid and can be used to determine the time offset from the previous segment.

In normal block mode (one segment per run, i.e. not rapid block mode) all segments may have

PICO_DEVICE_TIME_STAMP_RESET set, and no timing information can be inferred.

PICO_DEVICE_TIME_STAMP_RESET is a bit-flag so may be masked with any other status flag that relates
to that segment.

You can convert the intervals between segments from sample counts to time intervals if required. The

current sample interval can be found by using the timebase that was passed to ps5000aRunBlock in

conjunction with ps5000aGetTimebase.

timeStampCounter is a 48-bit unsigned value and will eventually wrap around. Your code must handle this
correctly, for example by masking the results of any arithmetic to the lower 48 bits. If the timestamp wraps
around more than once between two adjacent segments, this cannot be detected. This will only happen if
the interval between two adjacent trigger events exceeds 3 days (at the fastest timebase, or longer for
slower timebases), so is unlikely to be a concern in practical applications. Note that calculating the time
offset between adjacent segments, rather than to the first segment, reduces the complexity of dealing with
wraparounds.

API functions48

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.18.3 PS5000A_TIME_UNITS enumerated type

typedef enum enPS5000ATimeUnits

{

 PS5000A_FS,

 PS5000A_PS,

 PS5000A_NS,

 PS5000A_US,

 PS5000A_MS,

 PS5000A_S,

 PS5000A_MAX_TIME_UNITS,

} PS5000A_TIME_UNITS;

Applicability

Any function that requires time units

Values

PS5000A_FS, femtoseconds (10 s)

PS5000A_PS, picoseconds (10 s)

PS5000A_NS, nanoseconds (10 s)

PS5000A_US, microseconds (10 s)

PS5000A_MS, milliseconds (10 s)

PS5000A_S, seconds (s)

PicoScope 5000 Series (A API) Programmer's Guide 49

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.19 ps5000aGetTriggerTimeOffset – find out when
trigger occurred (32-bit)

PICO_STATUS ps5000aGetTriggerTimeOffset

(

int16_t handle,

uint32_t * timeUpper,

uint32_t * timeLower,

PS5000A_TIME_UNITS * timeUnits,

uint32_t segmentIndex

)

This function gets the trigger time offset for waveforms obtained in block mode or rapid block mode. The
trigger time offset is an adjustment value used for correcting jitter in the waveform, and is intended mainly
for applications that wish to display the waveform with reduced jitter. The offset is zero if the waveform
crosses the threshold at the trigger sampling instant, or a positive or negative value if jitter correction is
required. The value should be added to the nominal trigger time to get the corrected trigger time.

Call this function after data has been captured or when data has been retrieved from a previous capture.

This function is provided for use in programming environments that do not support 64-bit integers. Another

version of this function, ps5000aGetTriggerTimeOffset64, is available that returns the time as a single
64-bit value.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* timeUpper, on exit, the upper 32 bits of the time at which the trigger point occurred

* timeLower, on exit, the lower 32 bits of the time at which the trigger point occurred

* timeUnits, returns the time units in which timeUpper and timeLower are measured. See

PS5000A_TIME_UNITS.

segmentIndex, the number of the memory segment for which the information is required.

Returns

PICO_OK or other code from PicoStatus.h

API functions50

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.20 ps5000aGetTriggerTimeOffset64 – find out when
trigger occurred (64-bit)

PICO_STATUS ps5000aGetTriggerTimeOffset64

(

int16_t handle,

int64_t * time,

PS5000A_TIME_UNITS * timeUnits,

uint32_t segmentIndex

)

This function gets the trigger time offset for a waveform. It is equivalent to

ps5000aGetTriggerTimeOffset except that the time offset is returned as a single 64-bit value instead
of two 32-bit values.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* time, on exit, the time at which the trigger point occurred

* timeUnits, on exit, the time units in which time is measured. See PS5000A_TIME_UNITS.

segmentIndex, the number of the memory segment for which the information is required

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 51

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.21 ps5000aGetUnitInfo – read information about scope
device

PICO_STATUS ps5000aGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize,

PICO_INFO info
)

This function retrieves information about the specified oscilloscope or driver software. If the device fails to
open or no device is opened, it is still possible to read the driver version.

Applicability

All modes

Arguments

handle, identifies the device from which information is required. If an invalid handle is passed, only the
driver versions can be read.

* string, on exit, the unit information string selected specified by the info argument. If string is

NULL, only requiredSize is returned.

stringLength, the maximum number of 8-bit integers (int8_t) that may be written to string.

* requiredSize, on exit, the required length of the string array.

info, a number specifying what information is required. The possible values are as follows:

info Example

0 PICO_DRIVER_VERSION Version number of ps5000a.dll 1.0.0.1

1 PICO_USB_VERSION Type of USB connection to device: 1.1, 2.0
or 3.0

2.0

2 PICO_HARDWARE_VERSION Hardware version of device 1

3 PICO_VARIANT_INFO Variant number of device 5444B

4 PICO_BATCH_AND_SERIAL Batch and serial number of device KJL87/006

5 PICO_CAL_DATE Calibration date of device 30Sep09

6 PICO_KERNEL_VERSION Version of kernel driver 1.0

7 PICO_DIGITAL_HARDWARE_VERSION Hardware version of the digital section 1

8 PICO_ANALOGUE_HARDWARE_VERSION Hardware version of the analog section 1

9 PICO_FIRMWARE_VERSION_1 Primary firmware (FPGA code) version 1.0.0.0

10 PICO_FIRMWARE_VERSION_2 Secondary firmware (FPGA code) version 1.0.0.0

Returns

PICO_OK or other code from PicoStatus.h

API functions52

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.22 ps5000aGetValues – retrieve block-mode data with
callback

PICO_STATUS ps5000aGetValues

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

int16_t * overflow

)

This function returns block-mode data from the oscilloscope's buffer memory, with or without
downsampling, starting at the specified sample number. It is used to get the stored data after data
collection has stopped. It blocks the calling function while retrieving data.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will

be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

startIndex, a zero-based index that indicates the start point for data collection. It is measured in sample
intervals from the start of the buffer.

* noOfSamples, on entry, the number of samples required. On exit, the actual number retrieved. The
number of samples retrieved will not be more than the number requested, and the data retrieved starts at

startIndex.

downSampleRatio, the downsampling factor that will be applied to the raw data.

downSampleRatioMode, which downsampling mode to use. See PS5000A_RATIO_MODE. These values
are single-bit constants that can be ORed to apply multiple downsampling modes to the data.

segmentIndex, the zero-based number of the memory segment where the data is stored.

* overflow, on exit, a set of flags that indicate whether an overvoltage has occurred on any of the
channels. It is a bit field with bit 0 denoting Channel A.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 53

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.22.1 PS5000A_RATIO_MODE enumerated type

typedef enum enPS5000ARatioMode

{

 PS5000A_RATIO_MODE_NONE = 0,

 PS5000A_RATIO_MODE_AGGREGATE = 1,

 PS5000A_RATIO_MODE_DECIMATE = 2,

 PS5000A_RATIO_MODE_AVERAGE = 4,

 PS5000A_RATIO_MODE_DISTRIBUTION = 8

} PS5000A_RATIO_MODE;

Various methods of data reduction, or downsampling, are possible with the PicoScope 5000 Series
oscilloscopes. The downsampling is done at high speed by the driver, making your application faster and
more responsive than if it had to do its own data processing.

You specify the downsampling mode when you call one of the data collection functions such as

ps5000aGetValues. The following modes are available:

PS5000A_RATIO_MODE_NONE – No downsampling. Returns raw data values.

PS5000A_RATIO_MODE_AGGREGATE – Reduces every block of n values to just two values: a minimum
and a maximum. The minimum and maximum values are returned in two separate buffers.

PS5000A_RATIO_MODE_AVERAGE – Reduces every block of n values to a single value representing the
average (arithmetic mean) of all the values.

PS5000A_RATIO_MODE_DECIMATE – Reduces every block of n values to just the first value in the block,
discarding all the other values.

PS5000A_RATIO_MODE_DISTRIBUTION – Not used.

Retrieving multiple types of downsampled data
You can optionally retrieve data using more than one downsampling mode with a single call to

ps5000aGetValues. Set up a buffer for each downsampling mode by calling ps5000aSetDataBuffer.

Then, when calling ps5000aGetValues, set downSampleRatioMode to the bitwise OR of the required
downsampling modes.

Retrieving both raw and downsampled data
You cannot retrieve raw data and downsampled data in a single operation. If you require both raw and
downsampled data, first retrieve the downsampled data as described above and then continue as follows:

1. Call ps5000aStop.

2. Set up a data buffer for each channel using ps5000aSetDataBuffer with the ratio mode set to

PS5000A_RATIO_MODE_NONE.

3. Call ps5000aGetValues to retrieve the data.

API functions54

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.23 ps5000aGetValuesAsync – retrieve streaming data
with callback

PICO_STATUS ps5000aGetValuesAsync

(

int16_t handle,

uint32_t startIndex,

uint32_t noOfSamples,

uint32_t downSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

void * lpDataReady,

void * pParameter

)

This function returns data either with or without downsampling, starting at the specified sample number. It
is used to get the stored data from the driver after data collection has stopped. It returns the data using a
callback.

Applicability

Streaming mode and block mode

Arguments

handle, startIndex, noOfSamples, downSampleRatio, downSampleRatioMode,

segmentIndex, see ps5000aGetValues.

* lpDataReady, a pointer to the user-supplied function that will be called when the data is ready. This

will be a ps5000aDataReady function for block-mode data or a ps5000aStreamingReady function for
streaming-mode data.

* pParameter, a void pointer that will be passed to the callback function. The data type is determined by
the application.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 55

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.24 ps5000aGetValuesBulk – retrieve data in rapid block
mode

PICO_STATUS ps5000aGetValuesBulk

(

int16_t handle,

uint32_t * noOfSamples,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex,

uint32_t downSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms must have been
collected sequentially and in the same run.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* noOfSamples, on entry, the number of samples required; on exit, the actual number retrieved. The
number of samples retrieved will not be more than the number requested. The data retrieved always starts
with the first sample captured.

fromSegmentIndex, the first segment from which the waveform should be retrieved

toSegmentIndex, the last segment from which the waveform should be retrieved

downSampleRatio, downSampleRatioMode: see ps5000aGetValues.

* overflow, an array of integers equal to or larger than the number of waveforms to be retrieved. Each

segment index has a corresponding entry in the overflow array, with overflow[0] containing the flags

for the segment numbered fromSegmentIndex and the last element in the array containing the flags for

the segment numbered toSegmentIndex. Each element in the array is a bit field as described under

ps5000aGetValues.

Returns

PICO_OK or other code from PicoStatus.h

API functions56

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.25 ps5000aGetValuesOverlapped – set up data
collection ahead of capture

PICO_STATUS ps5000aGetValuesOverlapped

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request in block mode. The request will be

executed, and the arguments validated, when you call ps5000aRunBlock. The advantage of this function is

that the driver makes contact with the scope only once, when you call ps5000aRunBlock, compared with

the two contacts that occur when you use the conventional ps5000aRunBlock, ps5000aGetValues
calling sequence. This slightly reduces the dead time between successive captures in block mode.

After calling ps5000aRunBlock, you can optionally use ps5000aGetValues to request further copies of
the data. This might be required if you wish to display the data with different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability

Block mode

Arguments

handle, startIndex, * noOfSamples†, downSampleRatio, downSampleRatioMode,

segmentIndex, see ps5000aGetValues.

* overflow†, see ps5000aGetValuesBulk.

† The driver retains a pointer to noOfSamples and overflow to report back once the capture has
completed. In C# you must pin these arguments.

Returns

PICO_OK or other code from PicoStatus.h

4.25.1 Using the GetValuesOverlapped functions

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

2a. Optionally set up digital inputs using ps5000aSetDigitalPort (mixed-signal scopes only).

3. Using ps5000aGetTimebase, select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup functions ps5000aSetSimpleTrigger to set up the trigger if required.

5. Use ps5000aSetDataBuffer to tell the driver where your memory buffer is.
6. Set up the transfer of the block of data from the oscilloscope using

ps5000aGetValuesOverlapped.

7. Start the oscilloscope running using ps5000aRunBlock.

PicoScope 5000 Series (A API) Programmer's Guide 57

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

8. Wait until the oscilloscope is ready using the ps5000aBlockReady callback (or poll using

ps5000aIsReady).
9. Display the data.
10. Repeat steps 7 to 9 if needed.

11. Stop the oscilloscope by calling ps5000aStop.

A similar procedure can be used with rapid block mode using the ps5000aGetValuesOverlappedBulk
function.

API functions58

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.26 ps5000aGetValuesOverlappedBulk – set up data
collection in rapid block mode

PICO_STATUS ps5000aGetValuesOverlappedBulk

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request in rapid block mode. The request will be

executed, and the arguments validated, when you call ps5000aRunBlock. The advantage of this method is

that the driver makes contact with the scope only once, when you call ps5000aRunBlock, compared with

the two contacts that occur when you use the conventional ps5000aRunBlock, ps5000aGetValuesBulk
calling sequence. This slightly reduces the dead time between successive captures in rapid block mode.

After calling ps5000aRunBlock, you can optionally use ps5000aGetValues to request further copies of
the data. This might be required if you wish to display the data with different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability

Rapid block mode

Arguments

handle, startIndex, * noOfSamples†, downSampleRatio, downSampleRatioMode, see

ps5000aGetValues.

fromSegmentIndex, toSegmentIndex, * overflow†, see ps5000aGetValuesBulk.

† The driver retains a pointer to noOfSamples and overflow to report back once the capture has
completed. In C# you must pin these arguments.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 59

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.27 ps5000aGetValuesTriggerTimeOffsetBulk – get
rapid-block waveform timings (32-bit)

PICO_STATUS ps5000aGetValuesTriggerTimeOffsetBulk

(

int16_t handle,

uint32_t * timesUpper,

uint32_t * timesLower,

PS5000A_TIME_UNITS * timeUnits,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block mode or rapid block

mode. It is a more efficient alternative to calling ps5000aGetTriggerTimeOffset once for each

waveform required. See ps5000aGetTriggerTimeOffset for an explanation of trigger time offsets.

There is another version of this function, ps5000aGetValuesTriggerTimeOffsetBulk64, that returns
trigger time offsets as 64-bit values instead of pairs of 32-bit values.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* timesUpper, an array of integers. On exit, the most significant 32 bits of the time offset for each

requested segment index. times[0] will hold the fromSegmentIndex time offset and the last times

index will hold the toSegmentIndex time offset. The array must be long enough to hold the number of
requested times.

* timesLower, an array of integers. On exit, the least significant 32 bits of the time offset for each

requested segment index. times[0] will hold the fromSegmentIndex time offset and the last times

index will hold the toSegmentIndex time offset. The array must be long enough to hold the number of
requested times.

* timeUnits, an array of integers. The array must be long enough to hold the number of requested

times. On exit, timeUnits[0] will contain the time unit for fromSegmentIndex and the last element will

contain the time unit for toSegmentIndex. Refer to ps5000aGetTriggerTimeOffset for specific
figures

fromSegmentIndex, the first segment for which the time offset is required

toSegmentIndex, the last segment for which the time offset is required. If toSegmentIndex is less

than fromSegmentIndex then the driver will wrap around from the last segment to the first.

Returns

PICO_OK or other code from PicoStatus.h

API functions60

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.28 ps5000aGetValuesTriggerTimeOffsetBulk64 – get
rapid–block waveform timings (64-bit)

PICO_STATUS ps5000aGetValuesTriggerTimeOffsetBulk64

(

int16_t handle,

int64_t * times,

PS5000A_TIME_UNITS * timeUnits,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

This function retrieves the 64-bit time offsets for waveforms captured in rapid block mode.

A 32-bit version of this function, ps5000aGetValuesTriggerTimeOffsetBulk, is available for use with
programming languages that do not support 64-bit integers. See that function for an explanation of
waveform time offsets.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* times, an array of integers. On exit, this will hold the time offset for each requested segment index.

times[0] will hold the time offset for fromSegmentIndex, and the last times index will hold the time

offset for toSegmentIndex. The array must be long enough to hold the number of times requested.

* timeUnits, an array of integers long enough to hold the number of requested times. timeUnits[0]

will contain the time unit for fromSegmentIndex, and the last element will contain the toSegmentIndex.

Refer to ps5000aGetTriggerTimeOffset64 for specific figures.

fromSegmentIndex, the first segment for which the time offset is required. The results for this segment

will be placed in times[0] and timeUnits[0].

toSegmentIndex, the last segment for which the time offset is required. The results for this segment will

be placed in the last elements of the times and timeUnits arrays. If toSegmentIndex is less than

fromSegmentIndex then the driver will wrap around from the last segment to the first.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 61

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.29 ps5000aIsLedFlashing – check LED status

PICO_STATUS ps5000aIsLedFlashing

(

int16_t handle,

int16_t * status

)

This function reads the status of the front-panel LED.

Applicability

Block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* status, output: indicates the status of the LED:

0 = not flashing

1 = flashing

Returns

PICO_OK or other code from PicoStatus.h

API functions62

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.30 ps5000aIsReady – poll driver in block mode

PICO_STATUS ps5000aIsReady

(

int16_t handle,

int16_t * ready

)

This function may be used instead of a callback function to receive data from ps5000aRunBlock. To use

this method, pass a NULL pointer as the lpReady argument to ps5000aRunBlock. You must then poll the
driver to see if it has finished collecting the requested samples.

Applicability

Block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* ready, output: indicates the state of the collection. If zero, the device is still collecting. If non-zero, the

device has finished collecting and ps5000aGetValues can be used to retrieve the data.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 63

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.31 ps5000aIsTriggerOrPulseWidthQualifierEnabled –
find out whether trigger is enabled

PICO_STATUS ps5000aIsTriggerOrPulseWidthQualifierEnabled

(

int16_t handle,

int16_t * triggerEnabled,

int16_t * pulseWidthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability

Call after setting up the trigger, and just before calling either ps5000aRunBlock or

ps5000aRunStreaming.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* triggerEnabled, on exit, indicates whether the trigger will successfully be set when

ps5000aRunBlock or ps5000aRunStreaming is called. A non-zero value indicates that the trigger is set,
zero that the trigger is not set.

* pulseWidthQualifierEnabled, on exit, indicates whether the pulse width qualifier will successfully

be set when ps5000aRunBlock or ps5000aRunStreaming is called. A non-zero value indicates that the
pulse width qualifier is set, zero that the pulse width qualifier is not set.

Returns

PICO_OK or other code from PicoStatus.h

API functions64

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.32 ps5000aMaximumValue – get the maximum ADC
count

PICO_STATUS ps5000aMaximumValue

(

int16_t handle,

int16_t * value

)

This function returns a status code and outputs the maximum ADC count value to a parameter. The output
value depends on the currently selected resolution.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* value, output: set to the maximum ADC value.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 65

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.33 ps5000aMemorySegments – divide scope memory
into segments

PICO_STATUS ps5000aMemorySegments

(

int16_t handle,

uint32_t nSegments,

int32_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each capture fills the
scope's available memory. This function allows you to divide the memory into a number of segments so that
the scope can store several waveforms sequentially. After capturing multiple segments, you can query their

relative timings by calling ps5000aGetTriggerInfoBulk.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

nSegments, the number of segments required. To find the maximum number of memory segments

allowed, which may depend on the resolution setting, call ps5000aGetMaxSegments.

* nMaxSamples, on exit, the number of samples available in each segment. This is the total number over
all channels, so if two channels or 8-bit digital ports are in use, the number of samples available to each

channel is nMaxSamples divided by 2; for 3 or 4 channels or digital ports divide by 4; and for 5 to 6 channels
or digital ports divide by 8.

Returns

PICO_OK or other code from PicoStatus.h

API functions66

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.34 ps5000aMinimumValue – get the minimum ADC
count

PICO_STATUS ps5000aMinimumValue

(

int16_t handle,

int16_t * value

)

This function returns a status code and outputs the minimum ADC count value to a parameter. The output
value depends on the currently selected resolution.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* value, output: set to the minimum ADC value.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 67

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.35 ps5000aNearestSampleIntervalStateless – find
nearest available sampling interval

PICO_STATUS ps5000aNearestSampleIntervalStateless

(

int16_t handle,

PS5000A_CHANNEL_FLAGS enabledChannelOrPortFlags,

double timeIntervalRequested,

PS5000A_DEVICE_RESOLUTION resolution,

uint16_t useEts,

uint32_t * timebase,

double * timeIntervalAvailable

)

This function accepts a desired sampling interval and a proposed device configuration, and returns the
nearest available sampling interval for that configuration. It does not write the proposed configuration to the
device.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

enabledChannelOrPortFlags, the proposed combination of enabled channels and ports. Use the

bitwise-OR of the relevant PS5000A_CHANNEL_FLAGS values.

timeIntervalRequested, the proposed sampling interval, in seconds.

resolution, the proposed resolution mode.

useEts, the proposed state of ETS:

0 = ETS off

1 = ETS on

* timebase, on exit, the timebase that will result in a sampling interval as close as possible to

timeIntervalRequested.

* timeIntervalAvailable, on exit, the sampling interval corresponding to timebase.

Returns

PICO_OK or other code from PicoStatus.h

API functions68

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.36 ps5000aNoOfStreamingValues – get number of
samples in streaming mode

PICO_STATUS ps5000aNoOfStreamingValues

(

int16_t handle,

uint32_t * noOfValues

)

This function returns the number of samples available after data collection in streaming mode. Call it after

calling ps5000aStop.

Applicability

Streaming mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* noOfValues, on exit, the number of samples

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 69

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.37 ps5000aOpenUnit – open a scope device

PICO_STATUS ps5000aOpenUnit

(

int16_t * handle,

int8_t * serial

PS5000A_DEVICE_RESOLUTION resolution
)

This function opens a PicoScope 5000A, 5000B or 5000D Series scope attached to the computer. The
maximum number of units that can be opened depends on the operating system, the kernel driver and the
computer.

Applicability

All modes

Arguments

* handle, on exit, the result of the attempt to open a scope:

 if the scope fails to open (see return value for further information)

 0: if no scope is found (return value will be PICO_NOT_FOUND)

> 0: a number that uniquely identifies the scope until you close the device with

ps5000aCloseUnit; use this in all subsequent calls to API functions to identify this scope

* serial, on entry, a null-terminated string containing the serial number of the scope to be opened. If

serial is NULL, the function opens the first scope found; otherwise it tries to open the scope that matches
the string.

resolution, determines the resolution of the device when opened. If resolution is out of range, the

function returns PICO_INVALID_DEVICE_RESOLUTION.

Returns

PICO_OK or other code from PicoStatus.h

PICO_POWER_SUPPLY_NOT_CONNECTED:

· For a USB 2.0 device, call ps5000aChangePowerSource to complete the two-stage power-up sequence
for connection to a USB 2.0 port.

· For a PicoScope 5000D device, this indicates that the device has 4 channels but no PSU is connected.
The device will operate but only channels A and B (and digital ports on MSO devices) will be available.

· Note: The device ID passed back in handle is valid and can be passed to

ps5000aChangePowerSource.

PICO_USB3_0_DEVICE_NON_USB3_0_PORT:

· Call ps5000aChangePowerSource to complete the two-stage power-up sequence for a USB 2.0 port.

· Note: The device ID passed back in handle is valid and can be passed to

ps5000aChangePowerSource.

API functions70

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.38 ps5000aOpenUnitAsync – open a scope device
without blocking

PICO_STATUS ps5000aOpenUnitAsync

(

int16_t * status,

int8_t * serial

PS5000A_DEVICE_RESOLUTION resolution

)

This function opens a scope without blocking the calling thread. You can find out when it has finished by

periodically calling ps5000aOpenUnitProgress until that function returns a non-zero value.

Applicability

All modes

Arguments

* status, a status code:
0 if the open operation was disallowed because another open operation is in progress
1 if the open operation was successfully started

* serial, see ps5000aOpenUnit.

resolution, determines the resolution of the device when opened, the available values are one of the

PS5000A_DEVICE_RESOLUTION. If resolution is out of range, the function will return

PICO_INVALID_DEVICE_RESOLUTION.

Returns

PICO_OK or other code from PicoStatus.h

See ps5000aOpenUnit for more details.

PicoScope 5000 Series (A API) Programmer's Guide 71

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.39 ps5000aOpenUnitProgress – check progress of
OpenUnit call

PICO_STATUS ps5000aOpenUnitProgress

(

int16_t * handle,

int16_t * progressPercent,

int16_t * complete

)

This function checks on the progress of a request made to ps5000aOpenUnitAsync to open a scope.

If the function returns PICO_POWER_SUPPLY_NOT_CONNECTED or

PICO_USB3_0_DEVICE_NON_USB3_0_PORT, call ps5000aChangePowerSource to select a new power
source.

Applicability

Use after ps5000aOpenUnitAsync

Arguments

* handle, see ps5000aOpenUnit. This handle is valid only if the function returns PICO_OK.

* progressPercent, on exit, the percentage progress towards opening the scope. 100% implies that the
open operation is complete.

* complete, set to 1 when the open operation has finished.

Returns

PICO_OK or other code from PicoStatus.h

API functions72

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.40 ps5000aPingUnit – check communication with
device

PICO_STATUS ps5000aPingUnit

(

int16_t handle

)

This function can be used to check that the already opened device is still connected to the USB port and
communication is successful.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 73

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.41 ps5000aQueryOutputEdgeDetect – check if output
edge detection is enabled

PICO_STATUS ps5000aQueryOutputEdgeDetect

(

int16_t handle,

int16_t * state

)

This function reports whether output edge detection mode is currently enabled. The default state is enabled.

To switch output edge detection mode on or off, use ps5000aSetOutputEdgeDetect. See that function
description for more details.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* state, on exit, the state of output edge detection:

0 = off

1 = on

Returns

PICO_OK or other code from PicoStatus.h

API functions74

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.42 ps5000aRunBlock – start block mode

PICO_STATUS ps5000aRunBlock

(

int16_t handle,

int32_t noOfPreTriggerSamples,

int32_t noOfPostTriggerSamples,

uint32_t timebase,

int32_t * timeIndisposedMs,

uint32_t segmentIndex,

ps5000aBlockReady lpReady,

void * pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this process, see Using block
mode.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples
(see below for details). The total number of samples must not be more than the length of the segment

referred to by segmentIndex.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

noOfPreTriggerSamples, the number of samples to return before the trigger event. If no trigger has

been set, then this argument is added to noOfPostTriggerSamples to give the maximum number of
data points (samples) to collect.

noOfPostTriggerSamples, the number of samples to return after the trigger event. If no trigger event

has been set, then this argument is added to noOfPreTriggerSamples to give the maximum number of
data points to collect. If a trigger condition has been set, this specifies the number of data points to collect
after a trigger has fired, and the number of samples to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number in the range 0 to 232–1. See the guide to calculating timebase values.

* timeIndisposedMs, on exit, the time, in milliseconds, that the scope will spend collecting samples.
This does not include any auto trigger timeout. If this pointer is null, nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to use.

lpReady, a pointer to the ps5000aBlockReady callback function that the driver will call when the data

has been collected. To use the ps5000aIsReady polling method instead of a callback function, set this
pointer to NULL.

* pParameter, a void pointer that is passed to the ps5000aBlockReady callback function. The
callback can use this pointer to return arbitrary data to the application.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 75

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.43 ps5000aRunStreaming – start streaming mode

PICO_STATUS ps5000aRunStreaming

(

int16_t handle,

uint32_t * sampleInterval,

PS5000A_TIME_UNITS sampleIntervalTimeUnits,

uint32_t maxPreTriggerSamples,

uint32_t maxPostTriggerSamples,

int16_t autoStop,

uint32_t downSampleRatio,

PS5000A_RATIO_MODE downSampleRatioMode,

uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode. When data has been
collected from the device it is downsampled if necessary and then delivered to the application. Call

ps5000aGetStreamingLatestValues to retrieve the data. See Using streaming mode for a step-by-step
guide to this process.

The function always starts collecting data immediately, regardless of the trigger settings. Whether a trigger

is set or not, the total number of samples stored in the driver is always maxPreTriggerSamples +

maxPostTriggerSamples.

Applicability

Streaming mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* sampleInterval, on entry, the requested time interval between samples; on exit, the actual time interval
used.

sampleIntervalTimeUnits, the unit of time used for sampleInterval. See PS5000A_TIME_UNITS.

maxPreTriggerSamples, the maximum number of raw samples before a trigger event for each enabled
channel.

maxPostTriggerSamples, the maximum number of raw samples after a trigger event for each enabled
channel.

autoStop, a flag that specifies if the streaming should stop when all of maxSamples =

maxPreTriggerSamples + maxPostTriggerSamples have been captured and a trigger event has
occurred. If no trigger event occurs or no trigger is set, streaming will continue until stopped by

ps5000aStop. If autoStop is false, the scope will collect data continuously using the buffer as a first-in
first-out (FIFO) memory.

downSampleRatio, downSampleRatioMode: see ps5000aGetValues.

overviewBufferSize, the length of the overview buffers. These are temporary buffers used for storing

the data before returning it to the application. The length is the same as the bufferLth value passed to

ps5000aSetDataBuffer.

Returns

PICO_OK or other code from PicoStatus.h

API functions76

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.44 ps5000aSetAutoTriggerMicroSeconds – set
auto-trigger timeout

PICO_STATUS ps5000aSetAutoTriggerMicroSeconds

(

int16_t handle,

uint64_t autoTriggerMicroseconds

)

This function sets up the auto-trigger function, which starts a capture if no trigger event occurs within a
specified time after a Run command has been issued.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

autoTriggerMicroseconds, the number of microseconds for which the scope device will wait for a
trigger before timing out. If this argument is zero, the scope device will wait indefinitely for a trigger.
Otherwise, its behavior depends on the sampling mode:

· In block mode, the capture cannot finish until a trigger event or auto-trigger timeout has occurred.

· In streaming mode the device always starts collecting data as soon as ps5000aRunStreaming is called
but does not start counting post-trigger samples until it detects a trigger event or auto-trigger timeout.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 77

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.45 ps5000aSetBandwidthFilter – specifies the
bandwidth limit

PICO_STATUS ps5000aSetBandwidthFilter

(

int16_t handle,

PS5000A_CHANNEL channel,

PS5000A_BANDWIDTH_LIMITER bandwidth

)

This function controls the hardware bandwidth limiter fitted to each analog input channel. It does not apply
to digital input channels on mixed-signal scopes.

Applicability

All modes and models.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

channel, the channel to be configured (analog channel A, B, C or D only). See PS5000A_CHANNEL.

bandwidth, the required bandwidth (full or limited to 20 MHz). See PS5000A_BANDWIDTH_LIMITER.

Returns

PICO_OK or other code from PicoStatus.h

4.45.1 PS5000A_BANDWIDTH_LIMITER enumerated type

typedef enum enPS5000ABandwidthLimiter

{

 PS5000A_BW_FULL,

 PS5000A_BW_20MHZ,

} PS5000A_BANDWIDTH_LIMITER;

Applicability

Calls to ps5000aSetBandwidthFilter

Values

PS5000A_BW_FULL – use the scope's full specified bandwidth

PS5000A_BW_20MHZ – enable the hardware 20 MHz bandwidth limiter

API functions78

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.46 ps5000aSetChannel – set up input channels

PICO_STATUS ps5000aSetChannel

(

int16_t handle,

PS5000A_CHANNEL channel,

int16_t enabled,

PS5000A_COUPLING type,

PS5000A_RANGE range,

float analogueOffset

)

This function specifies whether an analog input channel is to be enabled, the input coupling type, voltage
range and analog offset.

Applicability

All modes.

Analog channels only. For digital channels, use ps5000aSetDigitalPort.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

channel, the channel to be configured. See PS5000A_CHANNEL (only the CHANNEL_A to CHANNEL_D
values apply).

enabled, whether or not to enable the channel. The values are:

0: disable

1: enable

Note 1: When you open a device, all channels are enabled by default.

type, the impedance and coupling type. See PS5000A_COUPLING.

range, the input voltage range. See PS5000A_RANGE.

analogueOffset, a voltage to add to the input channel before digitization. The allowable range of
offsets depends on the input range selected for the channel, as obtained from

ps5000aGetAnalogueOffset.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 79

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.46.1 PS5000A_CHANNEL enumerated type

typedef enum enPS5000AChannel

{

PS5000A_CHANNEL_A,

PS5000A_CHANNEL_B,

PS5000A_CHANNEL_C,

PS5000A_CHANNEL_D,

PS5000A_EXTERNAL,

PS5000A_MAX_CHANNELS = PS5000A_EXTERNAL,

PS5000A_TRIGGER_AUX,

PS5000A_MAX_TRIGGER_SOURCES,

PS5000A_DIGITAL_PORT0 = 0x80,

PS5000A_DIGITAL_PORT1,

PS5000A_DIGITAL_PORT2,

PS5000A_DIGITAL_PORT3,

PS5000A_PULSE_WIDTH_SOURCE = 0x10000000

} PS5000A_CHANNEL;

These values allow you to specify an input channel, 8-bit digital port or other input.

Applicability

All devices.
Not all values apply to all functions - see the description of the calling function for details.

Values

PS5000A_CHANNEL_A – analog channel A

PS5000A_CHANNEL_B – analog channel B

PS5000A_CHANNEL_C – analog channel C (4-channel scopes only)

PS5000A_CHANNEL_D – analog channel D (4-channel scopes only)

PS5000A_EXTERNAL – external trigger input (not on MSOs)

PS5000A_TRIGGER_AUX – reserved

PS5000A_DIGITAL_PORT0 – digital channels 0–7 (MSOs only)

PS5000A_DIGITAL_PORT1 – digital channels 8–15 (MSOs only)

PS5000A_DIGITAL_PORT2 – reserved

PS5000A_DIGITAL_PORT3 – reserved

PS5000A_PULSE_WIDTH_SOURCE – pulse width qualifier*

* For use as a trigger source by functions such as ps5000aSetTriggerChannelPropertiesV2

API functions80

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.47 ps5000aSetDataBuffer – register data buffer with
driver

PICO_STATUS ps5000aSetDataBuffer

(

int16_t handle,

PS5000A_CHANNEL source,

int16_t * buffer,

int32_t bufferLth,

uint32_t segmentIndex,

PS5000A_RATIO_MODE mode
)

This function tells the driver where to store the data, either unprocessed or downsampled, that will be

returned after the next call to one of the GetValues functions. The function allows you to specify only a

single buffer, so for aggregation mode, which requires two buffers, call ps5000aSetDataBuffers instead.

You must allocate memory for the buffer before calling this function.

Applicability

Block, rapid block and streaming modes.
All downsampling modes except aggregation.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

channel, the channel or port for which you want to set the buffers. See PS5000A_CHANNEL.

buffer, pointer to the buffer. Each sample written to the buffer will be a 16-bit ADC count scaled
according to the selected voltage range.

bufferLth, the length of the buffer array.

segmentIndex, the number of the memory segment to be used.

mode, the downsampling mode. See ps5000aGetValues for the available modes, but note that a single

call to ps5000aSetDataBuffer can only associate one buffer with one downsampling mode. If you intend

to call ps5000aGetValues with more than one downsampling mode activated, then you must call

ps5000aSetDataBuffer several times to associate a separate buffer with each downsampling mode.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 81

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.48 ps5000aSetDataBuffers – register aggregated data
buffers with driver

PICO_STATUS ps5000aSetDataBuffers

(

int16_t handle,

PS5000A_CHANNEL source,

int16_t * bufferMax,

int16_t * bufferMin,

int32_t bufferLth,

uint32_t segmentIndex,

PS5000A_RATIO_MODE mode
)

This function tells the driver the location of one or two buffers for receiving data. You need to allocate
memory for the buffers before calling this function. If you do not need two buffers, because you are not

using aggregate mode, then you can optionally use ps5000aSetDataBuffer instead.

Applicability

Block and streaming modes with aggregation.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

channel, see ps5000aSetDataBuffer.

bufferMax, a user-allocated buffer to receive the maximum data values in aggregation mode, or the non-
aggregated values otherwise. Each value is a 16-bit ADC count scaled according to the selected voltage
range.

bufferMin, a user-allocated buffer to receive the minimum data values in aggregation mode. Not
normally used in other modes, but you can direct the driver to write non-aggregated values to this buffer by

setting bufferMax to NULL. To enable aggregation, the downsampling ratio and mode must be set

appropriately when calling one of the ps5000aGetValues...() functions.

bufferLth,the length of the bufferMax and bufferMin arrays.

segmentIndex, the number of the memory segment to be used.

mode, see ps5000aGetValues

Returns

PICO_OK or other code from PicoStatus.h

API functions82

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.49 ps5000aSetDeviceResolution – set the hardware
resolution

PICO_STATUS ps5000aSetDeviceResolution

(

int16_t handle,

PS5000A_DEVICE_RESOLUTION resolution

)

This function sets the sampling resolution of the device. At 12-bit and higher resolutions, the maximum
capture buffer length is half that of 8-bit mode. When using 15-bit resolution only 2 channels can be enabled
to capture data, and when using 16-bit resolution only one channel is available.

When you change the device resolution, the driver discards all previously captured data.

After changing the resolution and before calling ps5000aRunBlock or ps5000aRunStreaming, call

ps5000aSetChannel to set up the input channels.

Applicability

All modes.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

resolution, determines the resolution of the device when opened, the available values are one of the

PS5000A_DEVICE_RESOLUTION. If resolution is out of range the device will return

PICO_INVALID_DEVICE_RESOLUTION.

Returns

PICO_OK or other code from PicoStatus.h

4.49.1 PS5000A_DEVICE_RESOLUTION enumerated type

typedef enum enPS5000ADeviceResolution

{

 PS5000A_DR_8BIT,

 PS5000A_DR_12BIT,

 PS5000A_DR_14BIT,

 PS5000A_DR_15BIT,

 PS5000A_DR_16BIT

} PS5000A_DEVICE_RESOLUTION;

These values specify the resolution of the sampling hardware in the oscilloscope. 8-bit mode divides the
input voltage range into 256 levels. The number of levels increases as the resolution increases, up to a
maximum of 65 536 levels in 16-bit mode.

Applicability

Calls to ps5000aSetDeviceResolution etc.

Values

PS5000A_DR_8BIT – 8-bit mode

PS5000A_DR_12BIT – 12-bit mode

PS5000A_DR_14BIT – 14-bit mode

PicoScope 5000 Series (A API) Programmer's Guide 83

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

PS5000A_DR_15BIT – 15-bit mode

PS5000A_DR_16BIT – 16-bit mode

API functions84

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.50 ps5000aSetDigitalPort – set up digital inputs

PICO_STATUS ps5000aSetDigitalPort

(

int16_t handle,

PS5000A_CHANNEL port,

int16_t enabled,

int16_t logiclevel

)

This function enables or disables a digital port and sets the logic threshold.

In order to use the fastest sampling rates with digital inputs, disable all analog channels. When all analog
channels are disabled you must also select 8-bit resolution to allow the digital inputs to operate alone.

Applicability

Block and streaming modes with aggregation.
MSOs only.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

port, identifies the port for digital data:

PS5000A_DIGITAL_PORT0 = 0x80 (digital channels 0–7)

PS5000A_DIGITAL_PORT1 = 0x81 (digital channels 8–15)

enabled, whether or not to enable the port. Enabling a digital port allows the scope to collect data from
the port and to trigger on the port. The values are:

0: disable

1: enable

logiclevel, the threshold voltage used to distinguish the 0 and 1 states. Range: –32767 (–5 V) to 32767
(+5 V).

Returns

PICO_OK or other code from PicoStatus.h

4.50.1 MSO digital connector

The PicoScope 5000 Series MSOs have a digital input connector in addition to the analog input BNCs. The
illustration below shows the 20-pin IDC header plug as you look at the front panel of the device.

PicoScope 5000 Series (A API) Programmer's Guide 85

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.51 ps5000aSetEts – set up equivalent-time sampling

PICO_STATUS ps5000aSetEts

(

int16_t handle,

PS5000A_ETS_MODE mode,

int16_t etsCycles,

int16_t etsInterleave,

int32_t * sampleTimePicoseconds

)

This function is used to enable or disable ETS (equivalent-time sampling) and to set the ETS parameters.
See ETS overview for an explanation of ETS mode.

Applicability

Block mode. Other restrictions are listed in ETS overview.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

mode, the ETS mode. See PS5000A_ETS_MODE.

etsCycles, the number of cycles to store: the computer can then select etsInterleave cycles to give
the most uniform spread of samples. Maximum value is one of the following:

PS5242A_MAX_ETS_CYCLES

PS5243A_MAX_ETS_CYCLES

PS5244A_MAX_ETS_CYCLES

PS5X44D_MAX_ETS_CYCLES

PS5X43D_MAX_ETS_CYCLES

PS5X42D_MAX_ETS_CYCLES

etsInterleave, the number of waveforms to combine into a single ETS capture. Maximum value is one
of the following:

PS5242A_MAX_INTERLEAVE

PS5243A_MAX_INTERLEAVE

PS5244A_MAX_INTERLEAVE

PS5X44D_MAX_ETS_INTERLEAVE

PS5X43D_MAX_ETS_INTERLEAVE

PS5X42D_MAX_ETS_INTERLEAVE

* sampleTimePicoseconds, on exit, the effective sampling interval of the ETS data. For example, if the

captured sample time is 4 ns and etsInterleave is 10, then the effective sample time in ETS mode is
400 ps.

Returns

PICO_OK or other code from PicoStatus.h

API functions86

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.51.1 PS5000A_ETS_MODE enumerated type

typedef enum enPS5000AEtsMode

{

 PS5000A_ETS_OFF,

 PS5000A_ETS_FAST,

 PS5000A_ETS_SLOW,

 PS5000A_ETS_MODES_MAX

} PS5000A_ETS_MODE;

These types specify which type of ETS (equivalent-time sampling) to use.

Applicability

Calls to ps5000aSetEts

Values

PS5000A_ETS_OFF, disables ETS.

PS5000A_ETS_FAST, enables ETS and provides etsCycles of data, which may contain data from
previously returned cycles.

PS5000A_ETS_SLOW, enables ETS and provides fresh data every etsCycles. This mode takes longer to
provide each data set, but the data sets are more stable and are guaranteed to contain only new data.

PicoScope 5000 Series (A API) Programmer's Guide 87

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.52 ps5000aSetEtsTimeBuffer – set up buffer for ETS
timings (64-bit)

PICO_STATUS ps5000aSetEtsTimeBuffer

(

int16_t handle,

int64_t * buffer,

int32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These buffers contain the 64-
bit timing information for each ETS sample after you run a block-mode ETS capture.

Applicability

ETS mode only.
If your programming language does not support 64-bit data, use the 32-bit version

ps5000aSetEtsTimeBuffers instead.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* buffer, an array of 64-bit words, each representing the time in femtoseconds (10 15 s) at which the
sample was captured.

bufferLth, the length of the buffer array.

Returns

PICO_OK or other code from PicoStatus.h

API functions88

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.53 ps5000aSetEtsTimeBuffers – set up buffer for ETS
timings (32-bit)

PICO_STATUS ps5000aSetEtsTimeBuffers

(

int16_t handle,

uint32_t * timeUpper,

uint32_t * timeLower,

int32_t bufferLth
)

This function tells the driver where to find your application's ETS time buffers. These buffers contain the
timing information for each ETS sample after you run a block-mode ETS capture. There are two buffers
containing the upper and lower 32-bit parts of the timing information, to allow programming languages that
do not support 64-bit data to retrieve the timings.

If your programming language supports 64-bit data, you can use ps5000aSetEtsTimeBuffer instead.

Applicability

ETS mode only.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* timeUpper, an array of 32-bit words, each representing the upper 32 bits of the time in femtoseconds

(10 15 s) at which the sample was captured.

* timeLower, an array of 32-bit words, each representing the lower 32 bits of the time in femtoseconds
at which the sample was captured.

bufferLth, the length of the timeUpper and timeLower arrays.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 89

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.54 ps5000aSetNoOfCaptures – set number of captures
to collect in one run

PICO_STATUS ps5000aSetNoOfCaptures

(

int16_t handle,

uint32_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block mode. If you do not call
this function before a run, the driver will capture only one waveform. Once a value has been set, the value
remains constant unless changed.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

nCaptures, the number of waveforms to capture in one run.

Returns

PICO_OK or other code from PicoStatus.h

API functions90

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.55 ps5000aSetOutputEdgeDetect – change triggering
behavior

PICO_STATUS ps5000aSetOutputEdgeDetect

(

int16_t handle,

int16_t state

)

This function enables or disables output edge detection mode for the logic trigger. Output edge detection is
enabled by default and should be left enabled for normal operation.

The oscilloscope normally triggers only when the output of the trigger logic function changes state. For
example, if the function is "A high AND B high", the oscilloscope triggers when A is high and B changes from
low to high, but does not repeatedly trigger when A and B remain high. Calling

ps5000aSetOutputEdgeDetect with state = 0 changes this behavior so that the oscilloscope triggers
continually while the logic trigger function evaluates to TRUE.

To find out whether output edge detection is enabled, use ps5000aQueryOutputEdgeDetect.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

state, the desired state of output edge detection:

0 = off

1 = on

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 91

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.56 ps5000aSetPulseWidthDigitalPortProperties – set
digital port pulse width

PICO_STATUS ps5000aSetPulseWidthDigitalPortProperties

(

int16_t handle,

PS5000A_DIGITAL_CHANNEL_DIRECTIONS * directions

int16_t nDirections

)

This function will set the individual digital channels' pulse-width trigger directions. Each trigger direction
consists of a channel name and a direction. If the channel is not included in the array of

PS5000A_DIGITAL_CHANNEL_DIRECTIONS, the driver assumes the digital channel's pulse-width trigger

direction is PS5000A_DIGITAL_DONT_CARE.

Applicability

All modes.
Mixed-signal models only.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* directions, a pointer to an array of PS5000A_DIGITAL_CHANNEL_DIRECTIONS structures
describing the requested properties. The array can contain a single element describing the properties of one

channel, or a number of elements describing several digital channels. If directions is NULL, digital pulse-
width triggering is switched off. A digital channel that is not included in the array will be set to

PS5000A_DIGITAL_DONT_CARE.

nDirections, the number of digital channel directions being passed to the driver.

Returns

PICO_OK or other code from PicoStatus.h

API functions92

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.57 ps5000aSetPulseWidthQualifier – set up pulse width
triggering

PICO_STATUS ps5000aSetPulseWidthQualifier

(

int16_t handle,

PS5000A_PWQ_CONDITIONS * conditions,

int16_t nConditions,

PS5000A_THRESHOLD_DIRECTION direction,

uint32_t lower,

uint32_t upper,

PS5000A_PULSE_WIDTH_TYPE type

)

THIS FUNCTION IS NOT RECOMMENDED FOR NEW APPLICATIONS.

In new applications please use ps5000aSetPulseWidthQualifierProperties,

ps5000aSetPulseWidthQualifierConditions and

ps5000aSetPulseWidthQualifierDirections instead.

This function sets up pulse-width qualification, which can be used on its own for pulse-width triggering or
combined with threshold triggering, level triggering or window triggering to produce more complex triggers.
The pulse-width qualifier is set by defining one or more structures that are then ORed together. Each
structure is itself the AND of the states of one or more of the inputs. This AND-OR logic allows you to create
any possible Boolean function of the scope's inputs.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* conditions, an array of PS5000A_PWQ_CONDITIONS structures specifying the conditions that should
be applied to each channel. In the simplest case, the array consists of a single element. When there are

several elements, the overall trigger condition is the logical OR of all the elements. If conditions is NULL
then the pulse-width qualifier is not used.

nConditions, the number of elements in the conditions array. If nConditions is zero then the
pulse-width qualifier is not used.

Range: 0 to PS5000A_MAX_PULSE_WIDTH_QUALIFIER_COUNT.

direction, the direction of the signal required for the pulse width trigger to fire. See

PS5000A_THRESHOLD_DIRECTION constants for the list of possible values. Each channel of the

oscilloscope (except the Ext input) has two thresholds for each direction—for example, PS5000A_RISING

and PS5000A_RISING_LOWER—so that one can be used for the pulse-width qualifier and the other for the
level trigger. The driver will not let you use the same threshold for both triggers; so, for example, you cannot

use PS5000A_RISING as the direction argument for both ps5000aSetTriggerConditions and

ps5000aSetPulseWidthQualifier at the same time. There is no such restriction when using window
triggers.

lower, the lower limit of the pulse-width counter, in samples.

upper, the upper limit of the pulse-width counter, in samples. This parameter is used only when the type is

set to PS5000A_PW_TYPE_IN_RANGE or PS5000A_PW_TYPE_OUT_OF_RANGE.

PicoScope 5000 Series (A API) Programmer's Guide 93

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

type, the pulse-width type. See PS5000A_PULSE_WIDTH_TYPE.

Returns

PICO_OK or other code from PicoStatus.h

4.57.1 PS5000A_PWQ_CONDITIONS structure

typedef struct tPS5000APwqConditions

{

PS5000A_TRIGGER_STATE channelA;

PS5000A_TRIGGER_STATE channelB;

PS5000A_TRIGGER_STATE channelC;

PS5000A_TRIGGER_STATE channelD;

PS5000A_TRIGGER_STATE external;

PS5000A_TRIGGER_STATE aux;

} PS5000A_PWQ_CONDITIONS

A structure of this type is passed to ps5000aSetPulseWidthQualifier in the conditions argument
to specify the pulse-width qualifier conditions for all the trigger sources.

Each structure is the logical AND of the states of the scope's inputs. The

ps5000aSetPulseWidthQualifier function can OR together a number of these structures to produce
the final pulse width qualifier, which can therefore be any possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Applicability

Calls to ps5000aSetPulseWidthQualifier

Elements

channelA, channelB, channelC, channelD, external, the type of condition that should be

applied to each channel. See PS5000A_TRIGGER_STATE.

The channels that are set to PS5000A_CONDITION_TRUE or PS5000A_CONDITION_FALSE must all
meet their conditions simultaneously to produce a trigger. Channels set to

PS5000A_CONDITION_DONT_CARE are ignored.

aux, not used.

API functions94

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.58 ps5000aSetPulseWidthQualifierConditions – set up
pulse width triggering

PICO_STATUS ps5000aSetPulseWidthQualifierConditions

(

int16_t handle,

PS5000A_CONDITION * conditions,

int16_t nConditions,

PS5000A_CONDITIONS_INFO info

)

This function applies a condition to the pulse-width qualifier. It can either add the new condition to the
existing qualifier, or clear the existing qualifier and replace it with the new condition.

Note: The oscilloscope contains a single pulse-width counter. It is possible to include multiple channels in a
pulse-width qualifier but the same pulse-width counter will apply to all of them. The counter starts when your
selected trigger condition occurs, and the scope then triggers if the trigger condition ends after a time that
satisfies the pulse-width condition.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

conditions, a list of PS5000A_CONDITION structures

nConditions, the number of values in the conditions list

info, whether to add this condition to the existing definition or clear the definition and start a new one.

See PS5000A_CONDITIONS_INFO.

Returns

PICO_OK or other code from PicoStatus.h

4.58.1 PS5000A_CONDITIONS_INFO enumerated type

typedef enum enPS5000AConditionsInfo

{

PS5000A_CLEAR = 0x00000001,

PS5000A_ADD = 0x00000002

} PS5000A_CONDITIONS_INFO;

When you add a trigger condition, these values specify what to do with any existing trigger conditions that
you have previously set up.

Applicability

Setting trigger conditions

Values

PS5000A_CLEAR – clear existing trigger logic and replace with the new condition

PicoScope 5000 Series (A API) Programmer's Guide 95

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

PS5000A_ADD – add the new condition, using Boolean OR, to the existing trigger logic

You can combine both actions by bitwise OR-ing together the flags and casting to a

PS5000A_CONDITIONS_INFO data type:

(PS5000A_CONDITIONS_INFO) (PS5000A_CLEAR | PS5000A_ADD)

API functions96

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.59 ps5000aSetPulseWidthQualifierDirections – set up
pulse width triggering

PICO_STATUS ps5000aSetPulseWidthQualifierDirections

(

int16_t handle,

PS5000A_DIRECTION * directions,

int16_t nDirections

)

This function specifies the directions for all the trigger sources used with the pulse-width qualifier.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

directions, a list of PS5000A_DIRECTION structures specifying which direction to apply to each trigger
source

nDirections, the number of items in the directions list.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 97

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.60 ps5000aSetPulseWidthQualifierProperties – set up
pulse width triggering

PICO_STATUS ps5000aSetPulseWidthQualifierProperties

(

int16_t handle,

uint32_t lower,

uint32_t upper,

PS5000A_PULSE_WIDTH_TYPE type

)

This function sets up the pulse width timings and logic type of the pulse-width trigger qualifier.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

lower, the lower limit of the pulse-width counter, in samples. This argument is required for all pulse width
types.

upper, the upper limit of the pulse-width counter, in samples. This argument is used only when the type is

PS5000A_PW_TYPE_IN_RANGE or PS5000A_PW_TYPE_OUT_OF_RANGE.

type, the type of pulse width trigger. See PS5000A_PULSE_WIDTH_TYPE.

Returns

PICO_OK or other code from PicoStatus.h

4.60.1 PS5000A_PULSE_WIDTH_TYPE enumerated type

typedef enum enPS5000APulseWidthType

{

 PS5000A_PW_TYPE_NONE,

 PS5000A_PW_TYPE_LESS_THAN,

 PS5000A_PW_TYPE_GREATER_THAN,

 PS5000A_PW_TYPE_IN_RANGE,

 PS5000A_PW_TYPE_OUT_OF_RANGE

} PS5000A_PULSE_WIDTH_TYPE;

These values specify the type of pulse-width trigger. You can require the pulse width to be less than or
greater than a specified limit, or between two limits, or not between two limits.

Applicability

Pulse-width triggering

Values

PS5000A_PW_TYPE_NONE – do not use the pulse width qualifier

PS5000A_PW_TYPE_LESS_THAN – pulse width less than lower

PS5000A_PW_TYPE_GREATER_THAN – pulse width greater than lower.

PS5000A_PW_TYPE_IN_RANGE – pulse width between lower and upper.

PS5000A_PW_TYPE_OUT_OF_RANGE – pulse width not between lower and upper.

API functions98

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.61 ps5000aSetSigGenArbitrary – set up arbitrary
waveform generator

PICO_STATUS ps5000aSetSigGenArbitrary

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk,

uint32_t startDeltaPhase,

uint32_t stopDeltaPhase,

uint32_t deltaPhaseIncrement,

uint32_t dwellCount,

int16_t * arbitraryWaveform,

int32_t arbitraryWaveformSize,

PS5000A_SWEEP_TYPE sweepType,

PS5000A_EXTRA_OPERATIONS operation,

PS5000A_INDEX_MODE indexMode,

uint32_t shots,

uint32_t sweeps,

PS5000A_SIGGEN_TRIG_TYPE triggerType,

PS5000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator (AWG) uses direct digital synthesis (DDS). It maintains a 32-bit phase
accumulator that indicates the present location in the waveform. The top bits of the phase accumulator are
used as an index into a buffer containing the arbitrary waveform. The remaining bits act as the fractional
part of the index, enabling high-resolution control of output frequency and allowing the generation of lower
frequencies.

The phase accumulator initially increments by startDeltaPhase. If the AWG is set to sweep mode, the

phase increment is increased or decreased at specified intervals until it reaches stopDeltaPhase. The

easiest way to obtain the values of startDeltaPhase and stopDeltaPhase necessary to generate the

desired frequency is to call ps5000aSigGenFrequencyToPhase. Alternatively, see Calculating
deltaPhase below for more information on how to calculate these values.

Applicability

All modes. B, D and D MSO models only.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.

Note that if the signal voltages defined by the combination of offsetVoltage and pkToPk extend
outside the voltage range of the signal generator, the output waveform will be clipped.

startDeltaPhase, the initial value added to the phase accumulator as the generator begins to step
through the waveform buffer.

PicoScope 5000 Series (A API) Programmer's Guide 99

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

stopDeltaPhase, the final value added to the phase accumulator before the generator restarts or
reverses the sweep.

deltaPhaseIncrement, the amount added to the delta phase value every time the dwellCount period
expires. This determines the amount by which the generator sweeps the output frequency in each dwell
period.

dwellCount, the time, in 50 ns steps, between successive additions of deltaPhaseIncrement to the
delta phase accumulator. This determines the rate at which the generator sweeps the output frequency.

Minimum value: PS5000A_MIN_DWELL_COUNT

* arbitraryWaveform, a buffer that holds the waveform pattern as a set of samples equally spaced in

time. If pkToPk is set to its maximum (4 V) and offsetVoltage
+2 V]. Obtain the maximum and minimum allowed sample values by calling

ps5000aSigGenArbitraryMinMaxValues.

arbitraryWaveformSize, the length of the arbitrary waveform buffer, in samples. Obtain the minimum

and maximum allowed values by calling ps5000aSigGenArbitraryMinMaxValues.

sweepType, determines whether the startDeltaPhase is swept up to the stopDeltaPhase, down to

it, or repeatedly up and down. See PS5000A_SWEEP_TYPE.

operation, the type of waveform to be produced. See PS5000A_EXTRA_OPERATIONS.

indexMode, specifies how the signal will be formed from the arbitrary waveform data. Set to

PS5000A_SINGLE for single index mode or PS5000A_DUAL for dual index mode. See AWG index modes for
details.

shots, sweeps, triggerType, triggerSource, extInThreshold: see

ps5000aSigGenBuiltIn

Returns

PICO_OK or other code from PicoStatus.h

4.61.1 PS5000A_INDEX_MODE enumerated type

The arbitrary waveform generator supports single and dual index modes to help you make the best use of
the waveform buffer.

typedef enum enPS5000AIndexMode

{

 PS5000A_SINGLE,

 PS5000A_DUAL,

 PS5000A_QUAD,

 PS5000A_MAX_INDEX_MODES

} PS5000A_INDEX_MODE;

API functions100

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

PS5000A_SINGLE: Single mode. The generator
outputs the raw contents of the buffer repeatedly.
This mode is the only one that can generate
asymmetrical waveforms. You can also use this
mode for symmetrical waveforms, but the dual mode
makes more efficient use of the buffer memory.

PS5000A_DUAL: Dual mode. The generator outputs
the contents of the buffer from beginning to end, and
then does a second pass in the reverse direction
through the buffer. This allows you to specify only
the first half of a waveform with twofold symmetry,
such as a Gaussian function, and let the generator fill
in the other half.

PS5000A_QUAD: Not used.

4.61.2 Calculating deltaPhase

The arbitrary waveform generator steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize-1 to the phase accumulator every dacPeriod (1/dacFrequency). If the deltaPhase is
constant, the generator produces a waveform at a constant frequency that can be calculated as follows:

where:

outputFrequency = repetition rate of the complete arbitrary waveform
dacFrequency = update rate of AWG DAC (see table below)
deltaPhase = calculated from startDeltaPhase and deltaPhaseIncrement
phaseAccumulatorSize = maximum count of phase accumulator (see table below)
awgBufferSize = maximum AWG buffer length (see table below)
arbitraryWaveformSize = length in samples of the user-defined waveform

You can call ps5000aSigGenFrequencyToPhase to calculate the value for deltaPhase for the desired
frequency.

It is also possible to sweep the frequency by continually modifying the deltaPhase. This is done by setting up
a deltaPhaseIncrement that the oscilloscope adds to the deltaPhase at specified intervals.

Parameter PicoScope 5242B
PicoScope 5442B

PicoScope 5243B
PicoScope 5443B

PicoScope 5000D Series

PicoScope 5244B
PicoScope 5444B

dacFrequency 200 MHz

dacPeriod (= 1/dacFrequency) 5 ns

phaseAccumulatorSize 4 294 967 296 (232)

awgBufferSize 16 384 (214) 32 768 (215) 49 152 (3 × 214)

PicoScope 5000 Series (A API) Programmer's Guide 101

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.61.3 PS5000A_SWEEP_TYPE enumerated type

typedef enum enPS5000ASweepType

{

 PS5000A_UP,

 PS5000A_DOWN,

 PS5000A_UPDOWN,

 PS5000A_DOWNUP,

 PS5000A_MAX_SWEEP_TYPES

} PS5000A_SWEEP_TYPE;

These values specify the frequency sweep mode of the signal generator or arbitrary waveform generator.

Applicability

Signal generator or AWG setup

Values

PS5000A_UP – sweep the frequency from lower limit up to upper limit

PS5000A_DOWN – sweep the frequency from upper limit down to lower limit

PS5000A_UPDOWN – sweep the frequency up and then down

PS5000A_DOWNUP – sweep the frequency down and then up

4.61.4 PS5000A_EXTRA_OPERATIONS enumerated type

typedef enum enPS5000AExtraOperations

{

 PS5000A_ES_OFF,

 PS5000A_WHITENOISE,

 PS5000A_PRBS

} PS5000A_EXTRA_OPERATIONS;

These values specify additional signal types for the signal generator.

Applicability

Signal generator or AWG setup

Values

PS5000A_ES_OFF – normal signal generator operation specified by wavetype, or normal AWG
operation.

PS5000A_WHITENOISE – produces white noise and ignores all settings except pkToPk and

offsetVoltage.

PS5000A_PRBS – produces a pseudorandom binary sequence with a bit rate specified by the
start and stop frequencies.

API functions102

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.62 ps5000aSetSigGenBuiltIn – set up standard signal
generator

PICO_STATUS ps5000aSetSigGenBuiltIn

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk,

PS5000A_WAVE_TYPE waveType,

float startFrequency,

float stopFrequency,

float increment,

float dwellTime,

PS5000A_SWEEP_TYPE sweepType,

PS5000A_EXTRA_OPERATIONS operation,

uint32_t shots,

uint32_t sweeps,

PS5000A_SIGGEN_TRIG_TYPE triggerType,

PS5000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function sets up the signal generator to produce a signal from a list of built-in waveforms. If different
start and stop frequencies are specified, the device will sweep either up, down or up and down.

Applicability

All models

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal. Note that if the signal voltages

described by the combination of offsetVoltage and pkToPk extend outside the voltage range of the
signal generator, the output waveform will be clipped.

waveType, the type of waveform to be generated. See PS5000A_WAVE_TYPE.

startFrequency, the frequency that the signal generator will initially produce.

Minimum value:

PS5000A_MIN_FREQUENCY

Maximum value (depends on wave type):

PS5000A_SINE_MAX_FREQUENCY

PS5000A_SQUARE_MAX_FREQUENCY

PS5000A_TRIANGLE_MAX_FREQUENCY

PS5000A_SINC_MAX_FREQUENCY

PS5000A_RAMP_MAX_FREQUENCY

PS5000A_HALF_SINE_MAX_FREQUENCY

PS5000A_GAUSSIAN_MAX_FREQUENCY

PicoScope 5000 Series (A API) Programmer's Guide 103

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

stopFrequency, the frequency at which the sweep reverses direction or returns to the initial frequency. For

allowable values, see startFrequency.

increment, the amount of frequency increase or decrease in sweep mode.

dwellTime, the time for which the sweep stays at each frequency, in seconds.

sweepType, whether the frequency will sweep from startFrequency to stopFrequency, in the

opposite direction, or repeatedly reverse direction. See PS5000A_SWEEP_TYPE.

operation, the type of waveform to be produced, specified by one of the following enumerated types

(not 5000A models). See PS5000A_EXTRA_OPERATIONS.

shots,

0: sweep the frequency as specified by sweeps

1...PS5000A_MAX_SWEEPS_SHOTS: the number of cycles of the waveform to be produced after a

trigger event. sweeps must be zero.

PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start and run continuously after trigger occurs

sweeps,

0: produce number of cycles specified by shots

1..PS5000A_MAX_SWEEPS_SHOTS: the number of times to sweep the frequency after a trigger event,

according to sweepType. shots must be zero.

PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start a sweep and continue after trigger occurs

triggerType, the type of trigger (edge or level) that will be applied to the signal generator .See

PS5000A_SIGGEN_TRIG_TYPE. If a gated trigger is used, either shots or sweeps, but not both, must be
non-zero.

triggerSource, the source that will trigger the signal generator. See

PS5000A_SIGGEN_TRIG_SOURCE. If a trigger source other than P5000A_SIGGEN_NONE is specified,

either shots or sweeps, but not both, must be non-zero.

extInThreshold, used to set trigger level for external trigger.

Returns

PICO_OK or other code from PicoStatus.h

4.62.1 PS5000A_SIGGEN_TRIG_TYPE enumerated type

typedef enum enPS5000ASigGenTrigType

{

 PS5000A_SIGGEN_RISING,

 PS5000A_SIGGEN_FALLING,

 PS5000A_SIGGEN_GATE_HIGH,

 PS5000A_SIGGEN_GATE_LOW

} PS5000A_SIGGEN_TRIG_TYPE;

These values specify how triggering of the signal generator or arbitrary waveform generator works. The
signal generator can be started by a rising or falling edge on the trigger signal or can be gated to run while
the trigger signal is high or low. The gated trigger remembers the phase of the waveform when the trigger
signal goes inactive and resumes the waveform from the same phase when the trigger signal goes active
again.

API functions104

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

Applicability

Signal generator or AWG setup

Values

PS5000A_SIGGEN_RISING – trigger on rising edge

PS5000A_SIGGEN_FALLING – trigger on falling edge

PS5000A_SIGGEN_GATE_HIGH – run while trigger is high

PS5000A_SIGGEN_GATE_LOW – run while trigger is low

4.62.2 PS5000A_SIGGEN_TRIG_SOURCE enumerated type

typedef enum enPS5000ASigGenTrigSource

{

PS5000A_SIGGEN_NONE,

PS5000A_SIGGEN_SCOPE_TRIG,

PS5000A_SIGGEN_AUX_IN,

PS5000A_SIGGEN_EXT_IN,

PS5000A_SIGGEN_SOFT_TRIG

} PS5000A_SIGGEN_TRIG_SOURCE;

These values specify how triggering of the signal generator or arbitrary waveform generator works. The
signal generator can be started by a rising or falling edge on the trigger signal or can be gated to run while
the trigger signal is high or low.

Applicability

Signal generator or AWG setup

Values

PS5000A_SIGGEN_NONE – run without waiting for trigger

PS5000A_SIGGEN_SCOPE_TRIG – use scope trigger

PS5000A_SIGGEN_EXT_IN – use EXT input

PS5000A_SIGGEN_SOFT_TRIG – wait for software trigger provided by

ps5000aSigGenSoftwareControl

4.62.3 PS5000A_WAVE_TYPE enumerated type

typedef enum enPS5000AWaveType

{

 PS5000A_SINE,

 PS5000A_SQUARE,

 PS5000A_TRIANGLE,

 PS5000A_RAMP_UP,

 PS5000A_RAMP_DOWN,

 PS5000A_SINC,

 PS5000A_GAUSSIAN,

 PS5000A_HALF_SINE,

 PS5000A_DC_VOLTAGE,

 PS5000A_WHITE_NOISE,

 PS5000A_MAX_WAVE_TYPES

} PS5000A_WAVE_TYPE;

These values specify which standard waveform is produced by the signal generator.

PicoScope 5000 Series (A API) Programmer's Guide 105

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

Applicability

Signal generator setup

Values

PS5000A_SINE – sine wave

PS5000A_SQUARE – square wave

PS5000A_TRIANGLE – triangle wave

PS5000A_DC_VOLTAGE – DC voltage

PS5000A_RAMP_UP – rising sawtooth (not 5000A Series)

PS5000A_RAMP_DOWN – falling sawtooth (not 5000A Series)

PS5000A_SINC – sin (x)/x (not 5000A Series)

PS5000A_GAUSSIAN – Gaussian (not 5000A Series)

PS5000A_HALF_SINE – half (full-wave rectified) sine (not 5000A Series)

API functions106

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.63 ps5000aSetSigGenBuiltInV2 – high-precision signal
generator setup

PICO_STATUS ps5000aSetSigGenBuiltInV2

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk,

PS5000A_WAVE_TYPE waveType,

double startFrequency,

double stopFrequency,

double increment,

double dwellTime,

PS5000A_SWEEP_TYPE sweepType,

PS5000A_EXTRA_OPERATIONS operation,

uint32_t shots,

uint32_t sweeps,

PS5000A_SIGGEN_TRIG_TYPE triggerType,

PS5000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function allows you to set the signal generator frequency with double precision. In all other respects it

is the same as ps5000aSetSigGenBuiltIn.

Applicability

All models

Arguments

See ps5000aSetSigGenBuiltIn

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 107

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.64 ps5000aSetSigGenPropertiesArbitrary – change
AWG settings

PICO_STATUS ps5000aSetSigGenPropertiesArbitrary

(

int16_t handle,

uint32_t startDeltaPhase,

uint32_t stopDeltaPhase,

uint32_t deltaPhaseIncrement,

uint32_t dwellCount,

PS5000A_SWEEP_TYPE sweepType,

uint32_t shots,

uint32_t sweeps,

PS5000A_SIGGEN_TRIG_TYPE triggerType,

PS5000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function reprograms the arbitrary waveform generator. All values can be reprogrammed while the
oscilloscope is waiting for a trigger.

Applicability

All modes.
PicoScope 5000B, 5000D and 5000D MSO models only.

Arguments

See ps5000aSetSigGenArbitrary

Returns

PICO_OK or other code from PicoStatus.h

API functions108

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.65 ps5000aSetSigGenPropertiesBuiltIn – change
function generator settings

PICO_STATUS ps5000aSetSigGenPropertiesBuiltIn

(

int16_t handle,

double startFrequency,

double stopFrequency,

double increment,

double dwellTime,

PS5000A_SWEEP_TYPE sweepType,

uint32_t shots,

uint32_t sweeps,

PS5000A_SIGGEN_TRIG_TYPE triggerType,

PS5000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function reprograms the signal generator. Values can be changed while the oscilloscope is waiting for a
trigger.

Applicability

All modes

Arguments

See ps5000aSetSigGenBuiltIn

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 109

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.66 ps5000aSetSimpleTrigger – set edge or level trigger

PICO_STATUS ps5000aSetSimpleTrigger

(

int16_t handle,

int16_t enable,

PS5000A_CHANNEL source,

int16_t threshold,

PS5000A_THRESHOLD_DIRECTION direction,

uint32_t delay,

int16_t autoTrigger_ms

)

This function simplifies arming the trigger, removing the need to call the three trigger functions

ps5000aSetTriggerChannelPropertiesV2, ps5000aSetTriggerChannelConditionsV2 and

ps5000aSetTriggerChannelDirectionsV2 individually. It supports only the edge and level trigger
types (not window triggers), only the analog and external trigger input channels, and does not allow more
than one channel to have a trigger applied to it. Any previous pulse width qualifier is canceled.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

enable, zero to disable the trigger, any non-zero value to set the trigger.

source, the channel on which to trigger (CHANNEL_A to CHANNEL_D and EXTERNAL values only).

threshold, the ADC count at which the trigger will fire.

direction, the direction in which the signal must move to cause a trigger. The following directions are

supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING.

delay, the time between the trigger occurring and the first sample. For example, if delay = 100, the
scope would wait 100 sample periods before sampling. At a timebase of 500 MS/s, or 2 ns per sample, the

total delay would then be 100 x 2 ns = 200 ns. Range: 0 to MAX_DELAY_COUNT.

autoTrigger_ms, the number of milliseconds after which the device starts capturing if no trigger occurs.
If this is set to zero, the scope device waits indefinitely for a trigger. The value passed here overrides any

value set by calling ps5000aSetAutoTriggerMicroSeconds. For greater precision, call

ps5000aSetAutoTriggerMicroSeconds after calling this function.

Returns

PICO_OK or other code from PicoStatus.h

API functions110

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.67 ps5000aSetTriggerChannelConditions – specify
which channels to trigger on

PICO_STATUS ps5000aSetTriggerChannelConditions

(

int16_t handle,

PS5000A_TRIGGER_CONDITIONS * conditions,

int16_t nConditions

)

THIS FUNCTION IS NOT RECOMMENDED FOR NEW APPLICATIONS.

In new applications please use ps5000aSetTriggerChannelConditionsV2 instead.

This function sets up trigger conditions on the scope's inputs. The trigger is defined by one or more

PS5000A_TRIGGER_CONDITIONS structures that are then ORed together. Each structure is itself the AND
of the states of one or more of the inputs. This AND-OR logic allows you to create any possible Boolean
function of the scope's inputs.

If complex triggering is not required, use ps5000aSetSimpleTrigger.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* conditions, an array of PS5000A_TRIGGER_CONDITIONS structures specifying the conditions that
should be applied to each channel. In the simplest case, the array consists of a single element. When there
is more than one element, the overall trigger condition is the logical OR of all the elements.

nConditions, the number of elements in the conditions array. If nConditions is zero, triggering is
switched off.

Returns

PICO_OK or other code from PicoStatus.h

4.67.1 PS5000A_TRIGGER_CONDITIONS structure

typedef struct tPS5000ATriggerConditions

{

PS5000A_TRIGGER_STATE channelA;

PS5000A_TRIGGER_STATE channelB;

PS5000A_TRIGGER_STATE channelC;

PS5000A_TRIGGER_STATE channelD;

PS5000A_TRIGGER_STATE external;

PS5000A_TRIGGER_STATE aux;

PS5000A_TRIGGER_STATE pulseWidthQualifier;

} PS5000A_TRIGGER_CONDITIONS

A structure of this type is passed to ps5000aSetTriggerChannelConditions in the conditions
argument to specify a set of trigger conditions across all input channels.

PicoScope 5000 Series (A API) Programmer's Guide 111

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

Each structure is the logical AND of all available trigger sources. The

ps5000aSetTriggerChannelConditions function can OR together a number of these structures to
produce the final trigger condition, which can therefore be any possible Boolean function of the scope's
inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channelA, channelB, channelC, channelD, external, pulseWidthQualifier, the type of

condition that should be applied to each channel. See PS5000A_TRIGGER_STATE.

The channels that are set to PS5000A_CONDITION_TRUE or PS5000A_CONDITION_FALSE must all
meet their conditions simultaneously to produce a trigger. Channels set to

PS5000A_CONDITION_DONT_CARE are ignored.

aux, not used.

API functions112

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.68 ps5000aSetTriggerChannelConditionsV2 – specify
which channels to trigger on

PICO_STATUS ps5000aSetTriggerChannelConditionsV2

(

int16_t handle,

PS5000A_CONDITION * conditions,

int16_t nConditions,

PS5000A_CONDITIONS_INFO info

)

The trigger is set up by defining an array of one or more PS5000A_CONDITION structures that are then
ANDed together. The function can be called multiple times, in which case the trigger logic is ORed with that

defined by previous calls. This AND-OR logic allows you to create almost any† Boolean function of the

scope's inputs. To cease ORing trigger channel conditions and start again with a new set, call with info =

PS5000A_CLEAR.

If you only need to trigger on a single analog input with edge or level detection, it's easier to use

ps5000aSetSimpleTrigger.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* conditions, an array of PS5000A_CONDITION structures specifying the conditions that should be
applied to each channel. In the simplest case, the array consists of a single element. When there is more
than one element, the overall trigger condition is the logical OR of all the elements.

nConditions, the number of elements in the conditions array. If nConditions is zero, triggering is
switched off.

info, specifies whether to clear the existing conditions or add the current condition to them using logical

OR. See PS5000A_CONDITIONS_INFO.

Returns

PICO_OK or other code from PicoStatus.h

† There is a restriction that applies only in rare cases with 5000D MSO devices. If you apply trigger
conditions to all six channels (analog A to D and digital ports P0 and P1), there is a restriction on how P0
and P1 may appear in your Boolean expression. You can implement an arbitrary function f(A,B,C,D,P0|P1) or
f(A,B,C,D,P0&P1), but not of any other combination of P0 and P1 or of the ports on their own.

4.68.1 PS5000A_CONDITION structure

typedef struct tPS5000ACondition

{

PS5000A_CHANNEL source;

PS5000A_TRIGGER_STATE condition;

} PS5000A_CONDITION

PicoScope 5000 Series (A API) Programmer's Guide 113

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

A structure of this type is passed to ps5000aSetTriggerChannelConditionsV2 in the conditions
argument to specify the trigger conditions.

Each structure defines a condition to apply to one of the scope's input channels or ports. The

ps5000aSetTriggerChannelConditionsV2 function can OR together a number of these structures to
produce the final trigger condition.

The structure is byte-aligned. In C and C++, for example, you should specify this using the #pragma

pack() instruction.

Elements

source – the channel or digital port used as the trigger source.

condition – how the source condition contributes to the overall trigger logic. See
PS5000A_TRIGGER_STATE.

4.68.2 PS5000A_TRIGGER_STATE enumerated type

typedef enum enPS5000ATriggerState

{

 PS5000A_CONDITION_DONT_CARE,

 PS5000A_CONDITION_TRUE,

 PS5000A_CONDITION_FALSE,

 PS5000A_CONDITION_MAX

} PS5000A_TRIGGER_STATE;

These values specify how each trigger condition is combined with the overall trigger logic.

Applicability

Setting trigger conditions

Values

PS5000A_CONDITION_DONT_CARE – the source condition has no effect on the logic

PS5000A_CONDITION_TRUE – the source condition must be true

PS5000A_CONDITION_FALSE – the source condition must be false

API functions114

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.69 ps5000aSetTriggerChannelDirections – set up
signal polarities for triggering

PICO_STATUS ps5000aSetTriggerChannelDirections

(

int16_t handle,

PS5000A_THRESHOLD_DIRECTION channelA,

PS5000A_THRESHOLD_DIRECTION channelB,

PS5000A_THRESHOLD_DIRECTION channelC;

PS5000A_THRESHOLD_DIRECTION channelD;

PS5000A_THRESHOLD_DIRECTION ext,

PS5000A_THRESHOLD_DIRECTION aux

)

THIS FUNCTION IS NOT RECOMMENDED FOR NEW APPLICATIONS.

In new applications please use ps5000aSetTriggerChannelDirectionsV2 instead.

This function sets the direction of the trigger for each channel.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

channelA, channelB, channelC, channelD, ext, the direction in which the signal must pass

through the threshold to activate the trigger. See PS5000A_THRESHOLD_DIRECTION for allowable values.
If using an edge or level trigger in conjunction with a pulse-width trigger, see

ps5000aSetPulseWidthQualifierDirections for more information.

aux, not used.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 115

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.69.1 PS5000A_THRESHOLD_DIRECTION enumerated type

typedef enum enPS5000AThresholdDirection

{

 PS5000A_ABOVE,

 PS5000A_BELOW,

 PS5000A_RISING,

 PS5000A_FALLING,

 PS5000A_RISING_OR_FALLING,

 PS5000A_ABOVE_LOWER,

 PS5000A_BELOW_LOWER,

 PS5000A_RISING_LOWER,

 PS5000A_FALLING_LOWER,

 PS5000A_INSIDE = PS5000A_ABOVE,

 PS5000A_OUTSIDE = PS5000A_BELOW,

 PS5000A_ENTER = PS5000A_RISING,

 PS5000A_EXIT = PS5000A_FALLING,

 PS5000A_ENTER_OR_EXIT = PS5000A_RISING_OR_FALLING,

 PS5000A_POSITIVE_RUNT = 9,

 PS5000A_NEGATIVE_RUNT,

 PS5000A_NONE = PS5000A_RISING} PS5000A_THRESHOLD_DIRECTION;

These values specify the direction(s) in which the trigger source must cross the threshold(s) to cause a
trigger event.

Value Trigger type Direction

PS5000A_ABOVE gated above the upper threshold

PS5000A_ABOVE_LOWER gated above the lower threshold

PS5000A_BELOW gated below the upper threshold

PS5000A_BELOW_LOWER gated below the lower threshold

PS5000A_RISING threshold rising edge, using upper threshold

PS5000A_RISING_LOWER threshold rising edge, using lower threshold

PS5000A_FALLING threshold falling edge, using upper threshold

PS5000A_FALLING_LOWER threshold falling edge, using lower threshold

PS5000A_RISING_OR_FALLING threshold either edge

PS5000A_INSIDE window-qualified inside window

PS5000A_OUTSIDE window-qualified outside window

PS5000A_ENTER window entering the window

PS5000A_EXIT window leaving the window

PS5000A_ENTER_OR_EXIT window either entering or leaving the window

PS5000A_POSITIVE_RUNT window-qualified

PS5000A_NEGATIVE_RUNT window-qualified

PS5000A_NONE none

API functions116

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.70 ps5000aSetTriggerChannelDirectionsV2 – set up
signal polarities for triggering

PICO_STATUS ps5000aSetTriggerChannelDirectionsV2

(

int16_t handle,

PS5000A_DIRECTION * directions,

uint16_t nDirections

)

This function sets the direction of the trigger for each channel.

Applicability

All modes.

Analog channels only (use ps5000aSetTriggerDigitalPortProperties for digital channels).

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

directions, an array of directions in which the signal must pass through the threshold to activate the
trigger. If you want to combine this with a pulse-width trigger, see

ps5000aSetPulseWidthQualifierDirections for more information.

nDirections, the length of the directions array.

Returns

PICO_OK or other code from PicoStatus.h

4.70.1 PS5000A_DIRECTION structure

typedef struct tPS5000ADirection

{

PS5000A_CHANNEL source;

PS5000A_THRESHOLD_DIRECTION direction;

PS5000A_THRESHOLD_MODE mode;

} PS5000A_DIRECTION;

A structure of this type is passed to ps5000aSetTriggerChannelDirectionsV2 in the conditions
argument to specify the direction in which the specified source signal must cross the threshold(s) to
produce a trigger event.

Each structure defines a condition to apply to one of the scope's input channels. The

ps5000aSetTriggerChannelDirectionsV2 function can OR together a number of these structures to
produce the final trigger condition.

The structure is byte-aligned. In C or C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

source, the channel used as the trigger source

direction, indicates the direction in which the signal must cross the threshold; see

PS5000A_THRESHOLD_DIRECTION.

PicoScope 5000 Series (A API) Programmer's Guide 117

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

mode, whether to use a level trigger (a single threshold) or a window trigger (two thresholds defining a

range). See PS5000A_THRESHOLD_MODE.

4.70.2 PS5000A_THRESHOLD_MODE enumerated type

typedef enum enPS5000AThresholdMode

{

 PS5000A_LEVEL,

 PS5000A_WINDOW

} PS5000A_THRESHOLD_MODE;

These values specify the type of threshold (level or window) used by a trigger condition.

Applicability

Setting trigger conditions

Values

PS5000A_LEVEL – use a level trigger (an edge or level trigger with a single threshold)

PS5000A_WINDOW – use a window trigger (two thresholds defining a range)

API functions118

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.71 ps5000aSetTriggerChannelProperties – set up
trigger thresholds

PICO_STATUS ps5000aSetTriggerChannelProperties

(

int16_t handle,

PS5000A_TRIGGER_CHANNEL_PROPERTIES * channelProperties,

int16_t nChannelProperties,

int16_t auxOutputEnable,

int32_t autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

THIS FUNCTION IS NOT RECOMMENDED FOR NEW APPLICATIONS.

In new applications please use ps5000aSetTriggerChannelPropertiesV2 and

ps5000aSetAutoTriggerMicroSeconds instead.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* channelProperties, a pointer to an array of PS5000A_TRIGGER_CHANNEL_PROPERTIES
structures describing the requested properties. The array can contain a single element describing the

properties of one channel, or a number of elements describing several channels. If NULL is passed,
triggering is switched off.

nChannelProperties, the length of the channelProperties array. If zero, triggering is switched off.

auxOutputEnable, not used.

autoTriggerMilliseconds, the time in milliseconds for which the scope device will wait before
collecting data if no trigger event occurs. If this is set to zero, the scope device will wait indefinitely for a
trigger.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 119

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.71.1 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure

typedef struct tPS5000ATriggerChannelProperties

{

int16_t thresholdUpper;

uint16_t thresholdUpperHysteresis;

int16_t thresholdLower;

uint16_t thresholdLowerHysteresis;

PS5000A_CHANNEL channel;

PS5000A_THRESHOLD_MODE thresholdMode;

} PS5000A_TRIGGER_CHANNEL_PROPERTIES

A structure of this type is passed to ps5000aSetTriggerChannelProperties in the

channelProperties argument to specify the trigger thresholds and threshold mode (level or window) for
the specified channel.

The structure is byte-aligned. In C or C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

thresholdUpper, the upper threshold at which the trigger must fire. This is scaled in 16-bit ADC counts
at the currently selected range for that channel.

thresholdUpperHysteresis, the hysteresis by which the trigger must exceed the upper threshold
before it will fire. It is scaled in 16-bit counts.

thresholdLower, the lower threshold at which the trigger must fire. This is scaled in 16-bit ADC counts
at the currently selected range for that channel.

thresholdLowerHysteresis, the hysteresis by which the trigger must exceed the lower threshold
before it will fire. It is scaled in 16-bit counts.

channel, the channel to which the properties apply.

thresholdMode, either a level or window trigger. See PS5000A_THRESHOLD_MODE.

API functions120

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.72 ps5000aSetTriggerChannelPropertiesV2 – set up
trigger thresholds

PICO_STATUS ps5000aSetTriggerChannelPropertiesV2

(

int16_t handle,

PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2 * channelProperties,

int16_t nChannelProperties,

int16_t auxOutputEnable

)

This function is used to enable or disable triggering on the analog channels and set its parameters.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* channelProperties, a pointer to an array of PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2
structures describing the requested properties. The array can contain a single element describing the

properties of one channel, or a number of elements describing several channels. If NULL is passed,
triggering is switched off.

nChannelProperties, the length of the channelProperties array. If zero, triggering is switched off.

auxOutputEnable, not used.

Returns

PICO_OK or other code from PicoStatus.h

4.72.1 PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2 structure

typedef struct tPS5000ATriggerChannelPropertiesV2

{

int16_t thresholdUpper;

uint16_t thresholdUpperHysteresis;

int16_t thresholdLower;

uint16_t thresholdLowerHysteresis;

PS5000A_CHANNEL channel;

} PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2

A structure of this type is passed to ps5000aSetTriggerChannelPropertiesV2 in the

channelProperties argument to specify the trigger thresholds for a given channel.

The structure is byte-aligned. In C or C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

thresholdUpper, the upper threshold at which the trigger must fire. This is scaled in 16-bit ADC counts
at the currently selected range for that channel.

PicoScope 5000 Series (A API) Programmer's Guide 121

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

thresholdUpperHysteresis, the hysteresis by which the trigger must exceed the upper threshold
before it will fire. It is scaled in 16-bit counts.

thresholdLower, thresholdLowerHysteresis, the settings for the lower threshold: see

thresholdUpper and thresholdUpperHysteresis.

channel, the channel to which the properties apply.

Upper and lower thresholds
The digital triggering hardware in your PicoScope has two independent trigger thresholds called upper and
lower. For some trigger types you can freely choose which threshold to use. See

PS5000A_THRESHOLD_DIRECTION for a list of trigger types and the thresholds that they support. Dual
thresholds are used for pulse-width triggering, when one threshold applies to the level trigger and the other
to the pulse-width qualifier; and for window triggering, when the two thresholds define the upper and lower
limits of the window.

Each threshold has its own trigger and hysteresis settings.

4.72.2 Hysteresis

Each trigger threshold (upper and lower) has an accompanying parameter called hysteresis. This defines a
second threshold at a small offset from the main threshold. The trigger fires when the signal crosses the
trigger threshold, but will not fire again until the signal has crossed the hysteresis threshold and then
returned to cross the trigger threshold. The double-threshold mechanism prevents noise on the signal from
causing unwanted trigger events.

For a rising-edge trigger the hysteresis threshold is below the trigger threshold. After one trigger event, the
signal must fall below the hysteresis threshold before the trigger is enabled for the next event. Conversely,
for a falling-edge trigger, the hysteresis threshold is always above the trigger threshold. After a trigger event,
the signal must rise above the hysteresis threshold before the trigger is enabled for the next event.

The trigger fires at A as the
signal rises past the trigger
threshold. It does not fire at B
because the signal has not yet
dipped below the hysteresis
threshold. The trigger fires again
at C after the signal has dipped
below the hysteresis threshold
and risen again past the trigger
threshold.

API functions122

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.73 ps5000aSetTriggerDelay – set up post-trigger delay

PICO_STATUS ps5000aSetTriggerDelay

(

int16_t handle,

uint32_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger event.

Applicability

All modes (but delay is ignored in streaming mode).

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

delay, the time between the trigger occurring and the first sample. For example, if delay = 100, the
scope waits 100 sample periods before sampling. At a timebase of 500 MS/s, or 2 ns per sample, the total
delay is then:

100 x 2 ns = 200 ns

Range: 0 to MAX_DELAY_COUNT

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 123

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.74 ps5000aSetTriggerDigitalPortProperties – set up
digital inputs for triggering

PICO_STATUS ps5000aSetTriggerDigitalPortProperties

(

int16_t handle,

PS5000A_DIGITAL_CHANNEL_DIRECTIONS * directions

int16_t nDirections

)

This function sets the individual digital channels' trigger directions. Each trigger direction consists of a
channel name and a direction. If the channel is not included in the array of

PS5000A_DIGITAL_CHANNEL_DIRECTIONS, the driver assumes that the digital channel's trigger

direction is PS5000A_DIGITAL_DONT_CARE.

Use with the other functions listed under Triggering. In particular, you must call

ps5000aSetTriggerChannelConditionsV2 if you want to include the digital ports in the trigger
conditions.

Applicability

PicoScope 5000D MSO models only.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

* directions, a pointer to an array of PS5000A_DIGITAL_CHANNEL_DIRECTIONS structures
describing the requested properties. The array can contain a single element describing the properties of one

channel, or a number of elements describing several digital channels. If directions is NULL, digital triggering

is switched off. A digital channel that is not included in the array is set to PS5000A_DIGITAL_DONT_CARE.

The outcomes of all the DIRECTIONS structures in the array are ORed together to produce the final trigger
signal.

nDirections, the number of digital channel directions being passed to the driver.

Returns

PICO_OK or other code from PicoStatus.h

API functions124

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.74.1 PS5000A_DIGITAL_CHANNEL_DIRECTIONS structure

typedef struct tPS5000ADigitalChannelDirections

{

 PS5000A_DIGITAL_CHANNEL channel;

 PS5000A_DIGITAL_DIRECTION direction;

} PS5000A_DIGITAL_CHANNEL_DIRECTIONS;

A structure of this type is passed to ps5000aSetTriggerDigitalPortProperties in the directions
argument to specify the trigger direction for the specified digital channel.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channel, the digital channel to be set up.

direction, the direction in which the digital input must cross the threshold(s) to cause a trigger event.

4.74.2 PS5000A_DIGITAL_CHANNEL enumerated type

typedef enum enPS5000ADigitalChannel

{

 PS5000A_DIGITAL_CHANNEL_0,

 PS5000A_DIGITAL_CHANNEL_1,

 PS5000A_DIGITAL_CHANNEL_2,

 PS5000A_DIGITAL_CHANNEL_3,

 PS5000A_DIGITAL_CHANNEL_4,

 PS5000A_DIGITAL_CHANNEL_5,

 PS5000A_DIGITAL_CHANNEL_6,

 PS5000A_DIGITAL_CHANNEL_7,

 PS5000A_DIGITAL_CHANNEL_8,

 PS5000A_DIGITAL_CHANNEL_9,

 PS5000A_DIGITAL_CHANNEL_10,

 PS5000A_DIGITAL_CHANNEL_11,

 PS5000A_DIGITAL_CHANNEL_12,

 PS5000A_DIGITAL_CHANNEL_13,

 PS5000A_DIGITAL_CHANNEL_14,

 PS5000A_DIGITAL_CHANNEL_15,

 PS5000A_DIGITAL_CHANNEL_16,

 PS5000A_DIGITAL_CHANNEL_17,

 PS5000A_DIGITAL_CHANNEL_18,

 PS5000A_DIGITAL_CHANNEL_19,

 PS5000A_DIGITAL_CHANNEL_20,

 PS5000A_DIGITAL_CHANNEL_21,

 PS5000A_DIGITAL_CHANNEL_22,

 PS5000A_DIGITAL_CHANNEL_23,

 PS5000A_DIGITAL_CHANNEL_24,

 PS5000A_DIGITAL_CHANNEL_25,

 PS5000A_DIGITAL_CHANNEL_26,

 PS5000A_DIGITAL_CHANNEL_27,

 PS5000A_DIGITAL_CHANNEL_28,

 PS5000A_DIGITAL_CHANNEL_29,

PicoScope 5000 Series (A API) Programmer's Guide 125

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

 PS5000A_DIGITAL_CHANNEL_30,

 PS5000A_DIGITAL_CHANNEL_31,

 PS5000A_MAX_DIGITAL_CHANNELS

} PS5000A_DIGITAL_CHANNEL;

These values specify one of the digital channels of a mixed-signal PicoScope 5000 Series model.

Applicability

Setting trigger conditions

Values

PS5000A_DIGITAL_CHANNEL_0 – least significant bit of PORT0
...

PS5000A_DIGITAL_CHANNEL_7 – most significant bit of PORT0

PS5000A_DIGITAL_CHANNEL_8 – least significant bit of PORT1
...

PS5000A_DIGITAL_CHANNEL_15 – most significant bit of PORT1

PS5000A_DIGITAL_CHANNEL_16 – not used
...

PS5000A_DIGITAL_CHANNEL_31 – not used

4.74.3 PS5000A_DIGITAL_DIRECTION enumerated type

typedef enum enPS5000ADigitalDirection

{

 PS5000A_DIGITAL_DONT_CARE,

 PS5000A_DIGITAL_DIRECTION_LOW,

 PS5000A_DIGITAL_DIRECTION_HIGH,

 PS5000A_DIGITAL_DIRECTION_RISING,

 PS5000A_DIGITAL_DIRECTION_FALLING,

 PS5000A_DIGITAL_DIRECTION_RISING_OR_FALLING,

 PS5000A_DIGITAL_MAX_DIRECTION

} PS5000A_DIGITAL_DIRECTION;

These values specify the polarity of a digital channel used as a trigger source.

Applicability

Setting trigger conditions

Values

PS5000A_DIGITAL_DONT_CARE – ignore input

PS5000A_DIGITAL_DIRECTION_LOW – input must be low

PS5000A_DIGITAL_DIRECTION_HIGH – input must be high

PS5000A_DIGITAL_DIRECTION_RISING – input must have a rising edge

PS5000A_DIGITAL_DIRECTION_FALLING – input must have a falling edge

PS5000A_DIGITAL_DIRECTION_RISING_OR_FALLING – input must have an edge of either polarity

API functions126

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.75 ps5000aSigGenArbitraryMinMaxValues – get AWG
parameters

PICO_STATUS ps5000aSigGenArbitraryMinMaxValues

(

int16_t handle,

int16_t * minArbitraryWaveformValue,

int16_t * maxArbitraryWaveformValue,

uint32_t * minArbitraryWaveformSize,

uint32_t * maxArbitraryWaveformSize

)

This function returns the range of possible sample values and waveform buffer sizes that can be supplied to

ps5000aSetSigGenArbitrary for setting up the arbitrary waveform generator (AWG). These values vary
between different models in the PicoScope 5000 Series.

Applicability

All models with AWG

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

minArbitraryWaveformValue, on exit, the lowest sample value allowed in the arbitraryWaveform

buffer supplied to ps5000aSetSigGenArbitrary.

maxArbitraryWaveformValue, on exit, the highest sample value allowed in the arbitraryWaveform

buffer supplied to ps5000aSetSigGenArbitrary.

minArbitraryWaveformSize, on exit, the minimum value allowed for the arbitraryWaveformSize

argument supplied to ps5000aSetSignGenArbitrary.

maxArbitraryWaveformSize, on exit, the maximum value allowed for the arbitraryWaveformSize

argument supplied to ps5000aSetSignGenArbitrary.

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 127

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.76 ps5000aSigGenFrequencyToPhase – convert
frequency to phase count

PICO_STATUS ps5000aSigGenFrequencyToPhase

(

int16_t handle,

double frequency,

PS5000A_INDEX_MODE indexMode,

uint32_t bufferLength,

uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary waveform generator (AWG).
The value returned depends on the length of the buffer, the index mode passed and the device model. The

phase count can then be used as one of the deltaPhase arguments for ps5000aSetSigGenArbitrary

or ps5000aSetSigGenPropertiesArbitrary.

Applicability

All models with AWG

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

frequency, the required AWG output frequency.

indexMode, see PS5000A_INDEX_MODE.

bufferLength, the number of samples in the AWG buffer.

phase, on exit, the deltaPhase argument to be sent to the AWG setup function

Returns

PICO_OK or other code from PicoStatus.h

API functions128

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.77 ps5000aSigGenSoftwareControl – trigger the signal
generator

PICO_STATUS ps5000aSigGenSoftwareControl

(

int16_t handle,

int16_t state
)

This function causes a trigger event, or starts and stops gating, for the signal generator. Use it as follows:

1. Call ps5000aSetSigGenBuiltIn or ps5000aSetSigGenArbitrary to set up the signal generator,

setting the triggerSource argument to PS5000A_SIGGEN_SOFT_TRIG.

2. (a) If you set the signal generator triggerType to edge triggering (PS5000A_SIGGEN_RISING or

PS5000A_SIGGEN_FALLING), call ps5000aSigGenSoftwareControl once to trigger the signal
generator.

(b) If you set the signal generator triggerType to gated-low triggering

(PS5000A_SIGGEN_GATE_LOW), call ps5000aSigGenSoftwareControl with state = 0 to start the

sweep and then again with state = 1 to stop it.

(c) If you set the signal generator triggerType to gated-high triggering

(PS5000A_SIGGEN_GATE_HIGH), call ps5000aSigGenSoftwareControl with state = 1 to start

the sweep and then again with state = 0 to stop it.

The gating can also be used to stop and start output if the number of shots has been set for a continuous

run (shots is set to PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN):

(d) If triggerType = PS5000A_SIGGEN_GATE_HIGH, state = 1 will cause the signal generator to

output, state = 0 will cause it to stop.

(e) If trigType = PS5000A_SIGGEN_GATE_LOW, the signal generator starts to output immediately.

Setting state = 1 will cause it to stop.

Applicability

Use with ps5000aSetSigGenBuiltIn or ps5000aSetSigGenArbitrary.

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

state, specifies the new state of the gate signal. A change of state either starts or stops the sweep

depending on the triggerType, as detailed above. Effective only when the signal generator triggerType

 is set to PS5000A_SIGGEN_GATE_HIGH or PS5000A_SIGGEN_GATE_LOW. Ignored for other trigger types.

0: set the gate signal low

1: set the gate signal high

Returns

PICO_OK or other code from PicoStatus.h

PicoScope 5000 Series (A API) Programmer's Guide 129

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.78 ps5000aStop – stop data capture

PICO_STATUS ps5000aStop

(

int16_t handle

)

This function stops the scope device from sampling data.

When running the device in streaming mode, you should always call this function after the end of a capture
to ensure that the scope is ready for the next capture.

When running the device in block mode, ETS mode or rapid block mode, you can call this function to
interrupt data capture.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will

be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

Returns

PICO_OK or other code from PicoStatus.h

API functions130

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.79 ps5000aTriggerWithinPreTriggerSamples – change
triggering behavior

PICO_STATUS ps5000aTriggerWithinPreTriggerSamples

(

int16_t handle,

PS5000A_TRIGGER_WITHIN_PRE_TRIGGER state

)

This function selects a mode in which the scope can be triggered anywhere within the pre-trigger samples,
as opposed to the normal operation of only arming the trigger after all the pre-trigger samples have been
collected. To find out where in the captured data the trigger event occurred when using this mode, call

ps5000aGetTriggerInfoBulk.

Triggering within the pre-trigger samples is only available in block mode. Triggering must be enabled using

ps5000aSetSimpleTrigger or the suite of ps5000aSetTriggerChannel… advanced trigger functions.

This mode is not compatible with trigger delay (set using ps5000aSetTriggerDelay) or ETS (set using

ps5000aSetEts). ps5000aRunBlock returns an error code if this mode is selected at the same time as
trigger delay or ETS.

This mode is not compatible with streaming. Calling ps5000aRunStreaming returns an error code if
triggering within pre-trigger samples is armed.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

state, the desired state of the trigger. See PS5000A_TRIGGER_WITHIN_PRE_TRIGGER.

Returns

PICO_OK or other code from PicoStatus.h

4.79.1 PS5000A_TRIGGER_WITHIN_PRE_TRIGGER enumerated
type

typedef enum enPS5000ATriggerWithinPreTrigger

{

 PS5000A_DISABLE,

 PS5000A_ARM

} PS5000A_TRIGGER_WITHIN_PRE_TRIGGER;

These values enable or disable the trigger during the pre-trigger period.

Applicability

Setting trigger conditions

Values

PS5000A_DISABLE – uses triggering in the normal way (default)

PS5000A_ARM – enables triggering anywhere within the pre-trigger samples

PicoScope 5000 Series (A API) Programmer's Guide 131

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.80 Callback functions

A callback function is a function, within your own application, that the ps5000a driver calls to signal that
data is ready.

For programming languages and environments that do not support callbacks, we provide a set of wrapper
functions.

API functions132

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.80.1 ps5000aBlockReady – indicate when block-mode data
ready

typedef void (CALLBACK *ps5000aBlockReady)

(

int16_t handle,

PICO_STATUS status,

void * pParameter

)

This callback function is part of your application. You register it with the ps5000a driver using

ps5000aRunBlock, and the driver calls it back when block-mode data is ready. You can then download the

data using the ps5000aGetValues function.

Applicability

Block mode only

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

status, indicates whether an error occurred during collection of the data.

* pParameter, a void pointer passed from ps5000aRunBlock. Your callback function can write to this
location to send any data, such as a status flag, back to your application.

Returns

nothing

PicoScope 5000 Series (A API) Programmer's Guide 133

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.80.2 ps5000aDataReady – indicate when post-collection data
ready

typedef void (CALLBACK *ps5000aDataReady)

(

int16_t handle,

PICO_STATUS status,

uint32_t noOfSamples,

int16_t overflow,

void * pParameter

)

This is a callback function that you write to collect data from the driver. You supply a pointer to the function

when you call ps5000aGetValuesAsync, and the driver calls your function back when the data is ready.

Applicability

All modes

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

status, a PICO_STATUS code returned by the driver.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicates whether an overvoltage has occurred and on which channels. It is a
bit field with bit 0 representing Channel A.

* pParameter, a void pointer passed from ps5000aGetValuesAsync. The callback function can write
to this location to send any data, such as a status flag, back to the application. The data type is defined by
the application programmer.

Returns

nothing

API functions134

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

4.80.3 ps5000aStreamingReady – indicate when streaming-mode
data ready

typedef void (CALLBACK *ps5000aStreamingReady)

(

int16_t handle,

int32_t noOfSamples,

uint32_t startIndex,

int16_t overflow,

uint32_t triggerAt,

int16_t triggered,

int16_t autoStop,

void * pParameter

)

This callback function is part of your application. You register it with the driver using

ps5000aGetStreamingLatestValues, and the driver calls it back when streaming-mode data is ready.

You can then download the data using the ps5000aGetValuesAsync function.

Your callback function should do nothing more than copy the data to another buffer within your application.
To maintain the best application performance, the function should return as quickly as possible without
attempting to process or display the data.

Applicability

Streaming mode only

Arguments

handle, the device identifier returned by ps5000aOpenUnit.

noOfSamples, the number of samples to collect.

startIndex, an index to the first valid sample in the buffer. This is the buffer that was previously passed

to ps5000aSetDataBuffer.

overflow, returns a set of flags that indicate whether an overvoltage has occurred on any of the
channels. It is a bit pattern with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the trigger point relative to startIndex. This

parameter is valid only when triggered is non-zero.

triggered, a flag indicating whether a trigger occurred. If non-zero, a trigger occurred at the location

indicated by triggerAt.

autoStop, the flag that was set in the call to ps5000aRunStreaming.

* pParameter, a void pointer passed from ps5000aGetStreamingLatestValues. The callback
function can write to this location to send any data, such as a status flag, back to the application.

Returns

nothing

PicoScope 5000 Series (A API) Programmer's Guide 135

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

4.81 Wrapper functions

The PicoSDK software development kit contains wrapper dynamic link library (DLL) files in the lib
subdirectory of your SDK installation for 32-bit and 64-bit systems. The wrapper functions provided by the
wrapper DLLs are for use with programming languages such as MathWorks MATLAB, National Instruments
LabVIEW and Microsoft Excel VBA that do not support features of the C programming language such as
callback functions.

The source code contained in the wrapper projects contains a description of the functions and the input and
output parameters.

Below we explain the sequence of calls required to capture data in streaming mode using the wrapper API
functions.

The ps5000aWrap.dll wrapper DLL has a callback function for streaming data collection that copies data
from the driver buffer specified to a temporary application buffer of the same size. To do this, the driver and
application buffers must be registered with the wrapper and the corresponding channel(s) must be specified
as being enabled. You should process the data in the temporary application buffer accordingly, for example
by copying the data into a large array.

Procedure:

1. Open the oscilloscope using ps5000aOpenUnit.

1a. Call setChannelCount so that the wrapper determines the number of analog channels on the device
and if it has digital ports.

2. Select channels, ranges and AC/DC coupling using ps5000aSetChannel.

2a. Inform the wrapper which channels have been enabled by calling setEnabledChannels.

2b. Optional: Call ps5000aSetDigitalPort to configure a digital port (mixed-signal scopes only).

2c. Inform the wrapper which digital ports have been enabled by calling setEnabledDigitalPorts.

3. Use the appropriate trigger setup functions. For programming languages that do not support structures,
use the wrapper's advanced trigger setup functions.

4. Call ps5000aSetDataBuffer (or for aggregated data collection ps5000aSetDataBuffers) to tell the
driver where your data buffer(s) is(are).

4a. Register the data buffer(s) with the wrapper and set the application buffer(s) into which the data will be

copied. Call setAppAndDriverBuffers (or setMaxMinAppAndDriverBuffers for aggregated data
collection).

5. Start the oscilloscope running using ps5000aRunStreaming.

6. Loop and call GetStreamingLatestValues and IsReady to get data and flag when the wrapper is
ready for data to be retrieved.

6a. Call the wrapper’s AvailableData function to obtain information on the number of samples collected
and the start index in the buffer.

6b. Call the wrapper’s IsTriggerReady function for information on whether a trigger has occurred and the
trigger index relative to the start index in the buffer.

7. Process data returned to your application data buffers.

API functions136

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

8. Call AutoStopped if the autoStop parameter has been set to 1 in the call to ps5000aRunStreaming.

9. Repeat steps 6 to 8 until AutoStopped returns true or you wish to stop data collection.

10. Call ps5000aStop, even if the autoStop parameter was set to TRUE.

11. To disconnect a device, call ps5000aCloseUnit.

PicoScope 5000 Series (A API) Programmer's Guide 137

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

5 Reference

5.1 Driver status codes

Every function in the ps5000a library returns a driver status code from the list of PICO_STATUS values in the

file PicoStatus.h. This file is included in PicoSDK.

5.2 Enumerated types and constants

The enumerated types and constants used used by the ps5000a library are defined in the ps5000aApi.h
header file. We recommend that you refer to these objects by name unless your programming language
allows only numerical values.

5.3 Numeric data types

Here are the sizes and ranges of the numeric data types used in the ps5000a API:

Type Bits Signed or unsigned?

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754)

int64_t 64 signed

double 64 signed (IEEE 754)

Reference138

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

5.4 Glossary

Aggregation. The ps5000a API can use a method called aggregation to reduce the amount of data your
application needs to process. This means that for every block of consecutive samples, it stores only the
minimum and maximum values. You can set the number of samples in each block, called the aggregation

parameter, when you call ps5000aRunStreaming for real-time capture, and when you call

ps5000aGetStreamingLatestValues to obtain post-processed data.

Analog bandwidth. All oscilloscopes have an upper limit to the range of frequencies at which they can
measure accurately. The analog bandwidth of an oscilloscope is defined as the frequency at which a
displayed sine wave has half the power of the input sine wave (or, equivalently, about 71% of the amplitude).

Block mode. A sampling mode in which the computer prompts the oscilloscope to collect a block of data
into its internal memory before stopping the oscilloscope and transferring the whole block into computer
memory. This mode of operation is effective when the input signal being sampled is high frequency. Note:
To avoid aliasing effects, the maximum input frequency must be less than half the sampling rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer memory is used by the
oscilloscope to temporarily store data before transferring it to the PC.

Callback. A mechanism that the API uses to communicate asynchronously with your application. At design
time, you add a function (a callback function) to your application to deal with captured data. At run time,
when you request captured data from the driver, you also pass it a pointer to your function. The driver then
returns control to your application, allowing it to perform other tasks until the data is ready. When this
happens, the driver calls your function in a new thread to signal that the data is ready. It is then up to your
function to communicate this fact to the rest of your application.

Coupling mode. This mode selects either AC or DC coupling in the oscilloscope's input path. Use AC mode
for small signals that may be superimposed on a DC level. Use DC mode for measuring absolute voltage

levels. Set the coupling mode using ps5000aSetChannel.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by accumulating information
over many similar wave cycles. This means the oscilloscope can capture fast-repeating signals that have a
higher frequency than the maximum sampling rate. Note: ETS should not be used for one-shot or non-
repetitive signals.

External trigger. This is the BNC socket marked EXT or Ext. It can be used to start a data collection run but
cannot be used to record data.

Flexible power. The 5000 Series oscilloscopes can be powered by either the two-headed USB cable supplied
for obtaining power from two USB ports, or a single USB port and the AC adaptor (included with 4-channel
models only).

Maximum sampling rate. A figure indicating the maximum number of samples the oscilloscope is capable
of acquiring per second. Maximum sample rates are given in MS/s (megasamples per second). The higher
the sampling capability of the oscilloscope, the more accurate the representation of the high frequencies in
a fast signal.

MSO. Mixed-signal oscilloscope. PicoScope 5000D MSO models have analog and digital input channels so
can be used as both an oscilloscope and a logic analyzer at the same time.

Overvoltage. Any input voltage to the oscilloscope must not exceed the overvoltage limit, measured with
respect to ground, otherwise the oscilloscope may be permanently damaged.

Signal generator. The signal generator output is the BNC socket marked GEN or Gen on the oscilloscope. If
you connect a BNC cable between this and one of the channel inputs, you can send a signal into one of the
channels. It can generate a sine, square or triangle wave that can be swept back and forth.

PicoScope 5000 Series (A API) Programmer's Guide 139

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

Streaming mode. A sampling mode in which the oscilloscope samples data and returns it to the computer in
an unbroken stream. This mode of operation is effective when the input signal being sampled contains only
low frequencies.

USB 1.1. An early version of the Universal Serial Bus standard found on older PCs. Although your PicoScope
5000 Series device will work with a USB 1.1 port, it will operate much more slowly than with a USB 2.0 or 3.0
port.

USB 2.0. A typical USB 2.0 port supports a data transfer rate that is 40 times faster than USB 1.1. USB 2.0 is
backwards-compatible with USB 1.1.

USB 3.0. A typical USB 3.0 port supports a data transfer rate that is 10 times faster than USB 2.0. USB 3.0 is
backwards-compatible with USB 2.0 and USB 1.1.

Vertical resolution. A value, in bits, indicating the degree of precision with which the oscilloscope can turn
input voltages into digital values. Calculation techniques can improve the effective resolution.

Voltage range. The voltage range is a pair of input voltages that correspond to the maximum and minimum
sample values that the driver can return in the selected mode. For example, in the range identified by the

enumeration value PS5000A_2V, the oscilloscope returns the maximum sample value when the input
voltage is +2 V and the minimum sample value when the input voltage is –2 V.

PicoScope 5000 Series (A API) Programmer's Guide 141

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

Index

A
AC/DC coupling 34, 78, 138

Access 2

ADC count 64, 66

Aggregation 20, 138

Analog bandwidth 138

Analog offset 33, 78

API function calls 26

Arbitrary waveform generator 98

buffer length 126

index modes 99

sample values 126

B
Bandwidth limiter 77, 78

Block mode 7, 8, 9, 138

asynchronous call 11

callback 132

polling status 62

running 74

using 10

Buffer size 138

C
Callback 8, 138

block mode 132

definition 133

ETS mode 18

streaming mode 134

Callback functions 131

Channel flags 28

Channel information 35

Channels 27, 79

enabling 78

settings 78

Closing units 29

Communication 72

Constants 137

Copyright 2

Coupling type 138

setting 78

D
Data acquisition 20

Data buffers

declaring 80

declaring, aggregation mode 81

Data retention 9

Data types 137

Digital channels 124

connector 84

data 6

directions 124, 125

PORT0, PORT1 6

ports 6

Digital ports

setting up 84

Downsampling 9, 52

maximum ratio 37

modes 53

Driver 4

status codes 137

E
Enumerated types 137

Enumerating oscilloscopes 31

ETS 86, 138

overview 18

setting time buffers 87, 88

setting up 85

using 19

External trigger 138

F
Fitness for purpose 2

Functions

overview 26

ps5000aBlockReady 132

ps5000aChangePowerSource 26

ps5000aChannelCombinationsStateless 27

ps5000aCloseUnit 29

ps5000aCurrentPowerSource 30

ps5000aDataReady 133

ps5000aEnumerateUnits 31

ps5000aFlashLed 32

ps5000aGetAnalogueOffset 33

ps5000aGetChannelInformation 35

ps5000aGetDeviceResolution 36

ps5000aGetMaxDownSampleRatio 37

ps5000aGetMaxSegments 38

ps5000aGetMinimumTimebaseStateless 39

ps5000aGetNoOfCaptures 40, 41

ps5000aGetStreamingLatestValues 42

ps5000aGetTimebase 22, 43

ps5000aGetTimebase2 44

Index142

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

Functions

ps5000aGetTriggerInfoBulk 45

ps5000aGetTriggerTimeOffset 49

ps5000aGetTriggerTimeOffset64 50

ps5000aGetUnitInfo 51

ps5000aGetValues 11, 52

ps5000aGetValuesAsync 11, 54

ps5000aGetValuesBulk 55

ps5000aGetValuesOverlapped 56

ps5000aGetValuesOverlappedBulk 58

ps5000aGetValuesTriggerTimeOffsetBulk 59

ps5000aGetValuesTriggerTimeOffsetBulk64 60

ps5000aIsLedFlashing 61

ps5000aIsReady 62

ps5000aIsTriggerOrPulseWidthQualifierEnabled 63

ps5000aMaximumValue 5, 64

ps5000aMemorySegments 65

ps5000aMinimumValue 5, 66

ps5000aNearestSampleIntervalStateless 67

ps5000aNoOfStreamingValues 68

ps5000aOpenUnit 69

ps5000aOpenUnitAsync 70

ps5000aOpenUnitProgress 71

ps5000aPingUnit 72

ps5000aQueryOutputEdgeDetect 73

ps5000aRunBlock 74

ps5000aRunStreaming 75

ps5000aSetAutoTriggerMicroSeconds 76

ps5000aSetChannel 5, 78

ps5000aSetDataBuffer 80

ps5000aSetDataBuffers 81

ps5000aSetDeviceResolution 82

ps5000aSetDigitalPort 84

ps5000aSetEts 18, 85

ps5000aSetEtsTimeBuffer 87

ps5000aSetEtsTimeBuffers 88

ps5000aSetNoOfCaptures 89

ps5000aSetOutputEdgeDetect 90

ps5000aSetPulseWidthDigitalPortProperties 91

ps5000aSetPulseWidthQualifier 92

ps5000aSetPulseWidthQualifierConditions 94

ps5000aSetPulseWidthQualifierDirections 96

ps5000aSetPulseWidthQualifierProperties 97

ps5000aSetSigGenArbitrary 98

ps5000aSetSigGenBuiltIn 102

ps5000aSetSigGenPropertiesArbitrary 107

ps5000aSetSigGenPropertiesBuiltIn 108

ps5000aSetSimpleTrigger 7, 109

ps5000aSetTriggerChannelConditions 7, 110

ps5000aSetTriggerChannelConditionsV2 112

ps5000aSetTriggerChannelDirections 7, 114

ps5000aSetTriggerChannelDirectionsV2 116

ps5000aSetTriggerChannelProperties 7, 118

ps5000aSetTriggerChannelPropertiesV2 120

ps5000aSetTriggerDelay 122

ps5000aSetTriggerDigitalPortProperties 123

ps5000aSigGenArbitraryMinMaxValues 126

ps5000aSigGenFrequencyToPhase 127

ps5000aSigGenSoftwareControl 128

ps5000aStop 11, 129

ps5000aStreamingReady 134

ps5000aTriggerWithinPreTriggerSamples 130

H
Hysteresis 119

I
Input range, selecting 78

Intended use 1

L
LED 61

flashing 32

Legal information 2

Liability 2

M
Memory in scope 9

Mission-critical applications 2

MSO 138

Multi-unit operation 25

O
One-shot signals 18

Opening a unit 69

checking progress 71

without blocking 70

Output edge detection 73, 90

Overvoltage 138

P
PC Oscilloscope 1

PC requirements 3

PICO_STATUS enum type 137

PicoScope 5000 Series 1

PicoScope software 1, 4, 137

Power source 26, 30, 138

flexible power options 24

ps5000a.dll 4

PS5000A_BANDWIDTH_LIMITER enumerated type 77

PicoScope 5000 Series (A API) Programmer's Guide 143

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved. ps5000apg.en r4

PS5000A_CHANNEL enumerated type 79

PS5000A_CHANNEL_FLAGS enumerated type 28

PS5000A_CHANNEL_INFO enumerated type 35

PS5000A_CONDITION structure 112

PS5000A_CONDITIONS_INFO enumerated type 94

PS5000A_COUPLING enumerated type 34

PS5000A_DEVICE_RESOLUTION enumerated type 82

PS5000A_DIGITAL_CHANNEL 124

PS5000A_DIGITAL_CHANNEL_DIRECTIONS 124

PS5000A_DIGITAL_DIRECTION 125

PS5000A_DIRECTION structure 116

PS5000A_ETS_MODE enumerated type 86

PS5000A_EXTRA_OPERATIONS enumerated type 101

PS5000A_INDEX_MODE enumerated type 99

PS5000A_PULSE_WIDTH_TYPE enumerated type 97

PS5000A_PWQ_CONDITIONS structure 93

PS5000A_RANGE enumerated type 34

PS5000A_RATIO_MODE enumerated type 53

PS5000A_RATIO_MODE_AGGREGATE 53

PS5000A_RATIO_MODE_AVERAGE 53

PS5000A_RATIO_MODE_DECIMATE 53

PS5000A_SIGGEN_TRIG_SOURCE 104

PS5000A_SIGGEN_TRIG_TYPE 103

PS5000A_SWEEP_TYPE 101

PS5000A_THRESHOLD_DIRECTION 115

PS5000A_THRESHOLD_MODE 117

PS5000A_TIME_UNITS 48

PS5000A_TRIGGER_CHANNEL_PROPERTIES structure

119

PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2 structure

120

PS5000A_TRIGGER_CONDITIONS structure 110

PS5000A_TRIGGER_CONDITIONS_V2 112

PS5000A_TRIGGER_STATE 113

PS5000A_TRIGGER_WITHIN_PRE_TRIGGER 130

PS5000A_WAVE_TYPE 104

Pulse-width qualifier 92

conditions 93, 94

directions 96

properties 97

requesting status 63

types 97

R
Ranges 34, 35

Rapid block mode 8, 12, 40, 41

aggregation 16

no aggregation 14

setting number of captures 89

using 12

Resolution 69, 82, 139

Retrieving data 52, 54

block mode, deferred 56

rapid block mode 55

rapid block mode, deferred 58

stored 21

streaming mode 42

Retrieving times

rapid block mode 59, 60

S
Sampling interval 39, 67

Sampling rate

maximum 9, 138

Scaling 5

Segmented memory 9, 10, 20, 65

Serial numbers 31

Setup time 9

Signal generator 138

arbitrary waveforms 98

built-in waveforms 102

calculating phase 127

frequency sweep type 101

software trigger 128

trigger source 104

trigger type 103

wave type 104

Spectrum analyzer 1

Status codes 137

Stopping sampling 129

Streaming mode 8, 20, 139

callback 134

getting number of samples 68

retrieving data 42

running 75

using 20

Support 2

T
Threshold directions 115

Threshold voltage 7

Time buffers

setting for ETS 87, 88

Time units 48

Timebase 22, 39, 67

calculating 43, 44

Timestamps 46

Trademarks 2

Trigger 7

channel properties 91, 118, 120, 123

conditions 110, 112

delay 122

Index144

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.ps5000apg.en r4

Trigger 7

digital port pulse width 91

digital ports 123

directions 114, 116

external 5

hysteresis 121

pulse-width qualifier 92

pulse-width qualifier conditions 93

pulse-width qualifier directions 96

pulse-width qualifier properties 94, 97

requesting status 63

setting up 109

stability 18

states 113

threshold mode 117

thresholds 120

time offset 49, 50

timeout 76

timestamps 45

within pre-trigger 130

U
Unit information, reading 51

Upgrades 2

Usage 2

USB 1, 3, 139

hub 25

V
Viruses 2

Voltage range 5, 139

selecting 78

W
WinUsb.sys 4

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Copyright © 2013–2018 Pico Technology Ltd. All rights reserved.

ps5000apg.en r4 2018-08-20

Pico Technology
320 N Glenwood Blvd
Tyler
Texas 75702
United States of America

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

sales@picotech.com
support@picotech.com

pico.china@picotech.com

Asia-Pacific office

Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

North America officeUK headquarters

Tel: +1 800 591 2796
Fax: +1 620 272 0981

Tel: +86 21 2226-5152

www.picotech.com

sales@picotech.com
support@picotech.com

	Welcome
	Introduction
	License agreement
	Trademarks
	System requirements

	Programming with the PicoScope 5000 Series (A API)
	Driver
	Voltage ranges
	MSO digital data
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous data retrieval

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	Power options
	Combining several oscilloscopes

	API functions
	ps5000aChangePowerSource – select USB or AC adaptor power
	ps5000aChannelCombinationsStateless – find out which channels can be used
	PS5000A_CHANNEL_FLAGS enumerated type

	ps5000aCloseUnit – close a scope device
	ps5000aCurrentPowerSource – indicate the current power state of the device
	ps5000aEnumerateUnits – find all connected oscilloscopes
	ps5000aFlashLed – flash the front-panel LED
	ps5000aGetAnalogueOffset – query the permitted analog offset range
	PS5000A_RANGE enumerated type
	PS5000A_COUPLING enumerated type

	ps5000aGetChannelInformation – query which ranges are available on a device
	PS5000A_CHANNEL_INFO enumerated type

	ps5000aGetDeviceResolution – retrieve the resolution the device will run in
	ps5000aGetMaxDownSampleRatio – query the aggregation ratio for data
	ps5000aGetMaxSegments – query the maximum number of segments
	ps5000aGetMinimumTimebaseStateless – find fastest available timebase
	ps5000aGetNoOfCaptures – find out how many captures are available
	ps5000aGetNoOfProcessedCaptures – query number of captures processed
	ps5000aGetStreamingLatestValues – get streaming data while scope is running
	ps5000aGetTimebase – get properties of the selected timebase
	ps5000aGetTimebase2 – get properties of the selected timebase
	ps5000aGetTriggerInfoBulk – get trigger timestamps
	PS5000A_TRIGGER_INFO structure
	Time stamping
	PS5000A_TIME_UNITS enumerated type

	ps5000aGetTriggerTimeOffset – find out when trigger occurred (32-bit)
	ps5000aGetTriggerTimeOffset64 – find out when trigger occurred (64-bit)
	ps5000aGetUnitInfo – read information about scope device
	ps5000aGetValues – retrieve block-mode data with callback
	PS5000A_RATIO_MODE enumerated type

	ps5000aGetValuesAsync – retrieve streaming data with callback
	ps5000aGetValuesBulk – retrieve data in rapid block mode
	ps5000aGetValuesOverlapped – set up data collection ahead of capture
	Using the GetValuesOverlapped functions

	ps5000aGetValuesOverlappedBulk – set up data collection in rapid block mode
	ps5000aGetValuesTriggerTimeOffsetBulk – get rapid-block waveform timings (32-bit)
	ps5000aGetValuesTriggerTimeOffsetBulk64 – get rapid–block waveform timings (64-bit)
	ps5000aIsLedFlashing – check LED status
	ps5000aIsReady – poll driver in block mode
	ps5000aIsTriggerOrPulseWidthQualifierEnabled – find out whether trigger is enabled
	ps5000aMaximumValue – get the maximum ADC count
	ps5000aMemorySegments – divide scope memory into segments
	ps5000aMinimumValue – get the minimum ADC count
	ps5000aNearestSampleIntervalStateless – find nearest available sampling interval
	ps5000aNoOfStreamingValues – get number of samples in streaming mode
	ps5000aOpenUnit – open a scope device
	ps5000aOpenUnitAsync – open a scope device without blocking
	ps5000aOpenUnitProgress – check progress of OpenUnit call
	ps5000aPingUnit – check communication with device
	ps5000aQueryOutputEdgeDetect – check if output edge detection is enabled
	ps5000aRunBlock – start block mode
	ps5000aRunStreaming – start streaming mode
	ps5000aSetAutoTriggerMicroSeconds – set auto-trigger timeout
	ps5000aSetBandwidthFilter – specifies the bandwidth limit
	PS5000A_BANDWIDTH_LIMITER enumerated type

	ps5000aSetChannel – set up input channels
	PS5000A_CHANNEL enumerated type

	ps5000aSetDataBuffer – register data buffer with driver
	ps5000aSetDataBuffers – register aggregated data buffers with driver
	ps5000aSetDeviceResolution – set the hardware resolution
	PS5000A_DEVICE_RESOLUTION enumerated type

	ps5000aSetDigitalPort – set up digital inputs
	MSO digital connector

	ps5000aSetEts – set up equivalent-time sampling
	PS5000A_ETS_MODE enumerated type

	ps5000aSetEtsTimeBuffer – set up buffer for ETS timings (64-bit)
	ps5000aSetEtsTimeBuffers – set up buffer for ETS timings (32-bit)
	ps5000aSetNoOfCaptures – set number of captures to collect in one run
	ps5000aSetOutputEdgeDetect – change triggering behavior
	ps5000aSetPulseWidthDigitalPortProperties – set digital port pulse width
	ps5000aSetPulseWidthQualifier – set up pulse width triggering
	PS5000A_PWQ_CONDITIONS structure

	ps5000aSetPulseWidthQualifierConditions – set up pulse width triggering
	PS5000A_CONDITIONS_INFO enumerated type

	ps5000aSetPulseWidthQualifierDirections – set up pulse width triggering
	ps5000aSetPulseWidthQualifierProperties – set up pulse width triggering
	PS5000A_PULSE_WIDTH_TYPE enumerated type

	ps5000aSetSigGenArbitrary – set up arbitrary waveform generator
	PS5000A_INDEX_MODE enumerated type
	Calculating deltaPhase
	PS5000A_SWEEP_TYPE enumerated type
	PS5000A_EXTRA_OPERATIONS enumerated type

	ps5000aSetSigGenBuiltIn – set up standard signal generator
	PS5000A_SIGGEN_TRIG_TYPE enumerated type
	PS5000A_SIGGEN_TRIG_SOURCE enumerated type
	PS5000A_WAVE_TYPE enumerated type

	ps5000aSetSigGenBuiltInV2 – high-precision signal generator setup
	ps5000aSetSigGenPropertiesArbitrary – change AWG settings
	ps5000aSetSigGenPropertiesBuiltIn – change function generator settings
	ps5000aSetSimpleTrigger – set edge or level trigger
	ps5000aSetTriggerChannelConditions – specify which channels to trigger on
	PS5000A_TRIGGER_CONDITIONS structure

	ps5000aSetTriggerChannelConditionsV2 – specify which channels to trigger on
	PS5000A_CONDITION structure
	PS5000A_TRIGGER_STATE enumerated type

	ps5000aSetTriggerChannelDirections – set up signal polarities for triggering
	PS5000A_THRESHOLD_DIRECTION enumerated type

	ps5000aSetTriggerChannelDirectionsV2 – set up signal polarities for triggering
	PS5000A_DIRECTION structure
	PS5000A_THRESHOLD_MODE enumerated type

	ps5000aSetTriggerChannelProperties – set up trigger thresholds
	PS5000A_TRIGGER_CHANNEL_PROPERTIES structure

	ps5000aSetTriggerChannelPropertiesV2 – set up trigger thresholds
	PS5000A_TRIGGER_CHANNEL_PROPERTIES_V2 structure
	Hysteresis

	ps5000aSetTriggerDelay – set up post-trigger delay
	ps5000aSetTriggerDigitalPortProperties – set up digital inputs for triggering
	PS5000A_DIGITAL_CHANNEL_DIRECTIONS structure
	PS5000A_DIGITAL_CHANNEL enumerated type
	PS5000A_DIGITAL_DIRECTION enumerated type

	ps5000aSigGenArbitraryMinMaxValues – get AWG parameters
	ps5000aSigGenFrequencyToPhase – convert frequency to phase count
	ps5000aSigGenSoftwareControl – trigger the signal generator
	ps5000aStop – stop data capture
	ps5000aTriggerWithinPreTriggerSamples – change triggering behavior
	PS5000A_TRIGGER_WITHIN_PRE_TRIGGER enumerated type

	Callback functions
	ps5000aBlockReady – indicate when block-mode data ready
	ps5000aDataReady – indicate when post-collection data ready
	ps5000aStreamingReady – indicate when streaming-mode data ready

	Wrapper functions

	Reference
	Driver status codes
	Enumerated types and constants
	Numeric data types
	Glossary

