Remote Control Manual SDS2000 Series Oscilloscopes

RC01020-E01A

SIGLENT TECHNOLOGIES CO., LTD

Catalogue

Using Status Registers	
About these Commands & Queries	
How they are listed?	
How they are described?	
When can they be used?	
Command Notation	
Table of Commands & Queries	
Commands & Queries	
Index.	

Using Status Registers

A wide range of status registers allows the oscilloscope's internal processing status to be determined quickly at any time. These registers and the instrument's status reporting system are designed to comply with IEEE 488.2 recommendations. Following an overview, starting this page, each of the registers and their roles are described.

Related functions are grouped together in common status registers. Some, such as the Status Byte Register (STB) or the Standard Event Status Register (ESR), are required by the IEEE 488.2 Standard. Other registers are device-specific, and include the Command Error Register (CMR) and Execution Error Register (EXR). Those commands associated with IEEE 488.2 mandatory status registers are preceded by an asterisk <*>.

About these Commands & Queries

This section lists and describes the remote control commands and queries recognized by the instrument. All commands and queries can be executed in either local or remote state.

The description for each command or query, with syntax and other information, begins on a new page. The name (header) is given in both long and short form at the top of the page, and the subject is indicated as a command or query or both. Queries perform actions such as obtaining information, and are recognized by the question mark (?) following the header.

How they are listed

The descriptions are listed in alphabetical order according to their long form. Thus the description of ATTENUATION, whose short form is ATTN, is listed before that of AUTO SETUP, whose short form is ASET.

How they are described

In the descriptions themselves, a brief explanation of the function performed is given. This is followed by a presentation of the formal syntax, with the header given in Upper-and-Lower-

Case characters and the short form derived from it in ALL UPPER-CASE characters. Where applicable, the syntax of the query is given with the format of its response.

When can they be used?

The commands and queries listed here can be used with SDS2000 Series digital instruments.

Command Notation

The following notation is used in the commands:

- <> Angular brackets enclose words that are used as placeholders, of which there are two types: the header path and the data parameter of a command
- := A colon followed by an equals sign separates a placeholder from the description of the type and range of values that may be used in a command instead of the placeholder.
- Braces enclose a list of choices, one of which one must be made.
- [] Square brackets enclose optional items.
- ... An ellipsis indicates that the items both to its left and right may be repeated a number of times.

As an example, consider the syntax notation for the command to set the vertical input sensitivity:

```
<channel>: VOLT_DIV <v_gain>
<channel> := {C1, C2, C3, C4}
<v_gain> := 2 mV to 10 V
```

The first line shows the formal appearance of the command, with <channel> denoting the placeholder for the header path and <v_gain> the placeholder for the data parameter specifying the desired vertical gain value. The second line indicates that one of four channels must be chosen for the header path. And the third explains that the actual vertical gain can be set to any value between 2 mV and 10 V

Table of Commands & Queries

Short Form	Long Form	Subsystem	What the Command or Query Does
ACQW	ACQUIRE_WAY	ACQUISITION	Specifies the acquisition mode.
ALST?	ALL_STATUS?	STATUS	Reads and clears the contents of all status registers.
ARM	ARM_ACQUISITION	ACQUISITION	Changes acquisition state from "stopped" to "single".
ATTN	ATTENUATION	ACQUISITION	Selects the vertical attenuation factor of the probe
ACAL	AUTO_CALIBRATE	MISCELLANEOUS	Enables or disables automatic calibration.
ASET	AUTO_SETUP	ACQUISITION	Adjusts vertical, time base and trigger parameters.
AUTTS	AUTO_TYPESET	ACQUISITION	Selects the display type of automatic setup.
AVGA	AVERAGE_ACQUIRE	ACQUISITION	Selects the average times of average acquisition.
BWL	BANDWIDTH_LIMIT	ACQUISITION	Enables/disables the bandwidth-limiting low-pass filter.
BUZZ	BUZZER	MISCELLANEOUS	Controls the built-in piezo-electric buzzer.
*CAL?	*CAL?	MISCELLANEOUS	Performs complete internal calibration of the instrument.
CHDR	COMM_HEADER	COMMUNICATION	Controls formatting of query responses.
*CLS	*CLS	STATUS	Clears all status data registers.
CMR?	CMR?	STATUS	Reads and clears the Command error Register (CMR).
CONET	COMM_NET	COMMUNICATION	Specifies network addresses of scope and printers.
CPL	COUPLING	ACQUISITION	Selects the specified input channel's coupling mode.

CRMS	CURSOR_MEASURE	CURSOR	Specifies the type of cursor/parameter measurement.
CRST?	CURSOR_SET?	CURSOR	Allows positioning of any one of eight cursors.
CRVA?	CURSOR_VALUE?	CURSOR	Returns trace values measured by specified cursors.
CSVS	CSV_SAVE	SAVE/RECALL	Saves specified waveform data of CSV format to USB device.
CYMT	CYMOMETER	FUNCTION	Returns the current cymometer value which displaying on the screen.
DATE	DATE	MISCELLANEOUS	Changes the date/time of the internal real-time clock.
DDR?	DDR?	STATUS	Clears the Device Dependent Register (DDR).
DEF	DEFINE?	FUNCTION	Specifies math expression for function evaluation.
DELF	DELETE_FILE	MASS STORAGE	Deletes files from mass storage.
DIR	DIRECTORY	MASS STORAGE	Creates and deletes file directories.
DTJN	DOT_JOIN	DISPLAY	Controls the interpolation lines between data points.
*ESE	*ESE	STATUS	Sets the Standard Event Status Enable register (ESE).
*ESR?	*ESR?	STATUS	Reads, clears the Event Status Register (ESR).
EXR?	EXR?	STATUS	Reads, clears the Execution error Register (EXR).
FLNM	FILENAME	MASS STORAGE	Changes default filenames.
FRTR	FORCE_TRIGGER	ACQUISITION	Forces the instrument to make one acquisition.
FVDISK	FORMAT_VDISK	MASS STORAGE	Reads the capability of the USB device.
FILT	FILTER	FUNCTION	Enables or disables the filter of specified source.

FILTS	FILT_SET	FUNCTION	Selects the type of filter, and sets the limit value of filter.
FFTW	FFT_WINDOW	FUNCTION	Selects the window of FFT.
FFTZ	FFT_ZOOM	FUNCTION	Selects the zoom in/out times of FFT trace.
FFTS	FFT_SCALE	FUNCTION	Selects the vertical scale of FFT trace.
FFTF	FFT_FULLSCREEN	FUNCTION	Enables or disables to display the FFT trace full screen.
GRDS	GRID_DISPLAY	DISPLAY	Selects the type of grid
GCSV	GET_CSV	WAVEFORMTRANS	Specifies waveform data of format to controller.
HMAG	HOR_MAGNIFY	DISPLAY	Horizontally expands the selected expansion trace.
HPOS	HOR_POSITION	DISPLAY	Horizontally positions intensified zone's center.
HCSU	HARDCOPY_SETUP	HARD COPY	Configures the hard-copy driver.
*IDN?	*IDN?	MISCELLANEOUS	For identification purposes.
INTS	INTENSITY	DISPLAY	Sets the grid or trace/text intensity level.
INR?	INR?	STATUS	Reads, clears INternal state change Register (INR).
INVS	INVERT_SET	DISPLAY	Invert the trace or the math waveform of specified source.
LOCK	LOCK	MISCELLANEOUS	Lock keyboard
MTVP	MATH_VERT_POS	ACQUISITION	Controls the vertical position of math waveform of specified source.
MTVD	MATH_VERT_DIV	ACQUISITION	Controls the vertical sensitivity of math waveform of specified source.
MSIZ	MEMORY_SIZE	FUNCTION	Returns the maximal memory size
OFST	OFFSET	ACQUISITION	Allows output channel vertical offset adjustment.
*OPC	*OPC	STATUS	Sets the OPC bit in the Event Status Register

			(ESR).
*OPT?	*OPT?	MISCELLANEOUS	Identifies oscilloscope options.
PACL	PARAMETER_CLR	CURSOR	Clears all current parameters in Custom, Pass/Fail.
PACU	PARAMETER_CUSTO M	CURSOR	Controls parameters with customizable qualifiers.
PAVA?	PARAMETER_VALU E?	CURSOR	Returns current parameter, mask test values.
PDET	PEAK_DETECT	ACQUISITION	Switches the peak detector ON and OFF.
PERS	PERSIST	DISPLAY	Enables or disables the persistence display mode.
PESU	PERSIST_SETUP	DISPLAY	Selects display persistence duration.
PNSU	PANEL_SETUP	SAVE/RECALL	Complements the *SAV/*RST commands.
PFDS	PF_DISPLAY	FUNCTION	Enables or disables to display the test and the message options of pass/fail.
PFST	PF_SET	FUNCTION	Sets the X mask and the Y mask.
PFSL	PF_SAVELOAD	SAVE/RECALL	Saves or recalls the created mask setting.
PFCT	PF_CONTROL	FUNCTION	Selects the "operate", "output" and the "stop on output" which are the options of pass/fail.
PFCM	PF_CREATEM	FUNCTION	Creates the mask of the pass/fail.
PFDD	PF_DATEDIS	FUNCTION	Return the number of the pass/fail monitor which can be displayed on the screen.
*RCL	*RCL	SAVE/RECALL	Recalls one of five non-volatile panel setups.
RCPN	RECALL_PANEL	SAVE/RECALL	Recalls a front-panel setup from mass storage.
*RST	*RST	SAVE/RECALL	The *RST command initiates a device reset.
REFS	REF_SET	FUNCTION	Sets the reference waveform and its options.
*SAV	*SAV	SAVE/RECALL	Stores current state in non-volatile internal memory.

SCDP	SCREEN_DUMP	HARD COPY	Causes a screen dump to controller.
SCSV	SCREEN_SAVE	DISPLAY	Controls the automatic screen saver.
*SRE	*SRE	STATUS	Sets the Service Request Enable register (SRE).
*STB?	*STB?	STATUS	Reads the contents of IEEE 488.
STOP	STOP	ACQUISITION	Immediately stops signal acquisition.
STO	STORE	WAVEFORMTRANS	Stores a trace in internal memory or mass storage.
STPN	STORE_PANEL	SAVE/RECALL	Stores front-panel setup to mass storage.
STST	STORE_SETUP	WAVEFORMTRANS	Controls the way in which traces are stored.
SAST	SAMPLE_STATUS	ACQUISITION	Return the acquisition status of the scope
SARA	SAMPLE_RATE	ACQUISITION	Return the sample rate of the scope
SANU	SAMPLE_NUM	ACQUISITION	Return the number of sampled points available from last acquisition and the trigger position
SKEW	SKEW	ACQUISITION	Sets the skew of specified trace.
SXSA	SINXX_SAMPLE	ACQUISITION	Sets the type of the interpolation.
TDIV	TIME_DIV	ACQUISITION	Modifies the time base setting.
TMPL	TEMPLATE	WAVEFORM TRANSFER	Produces a complete waveform template copy.
TRA	TRACE	DISPLAY	Enables or disables the display of a trace.
*TRG	*TRG	ACQUISITION	Executes an ARM command.
TRCP	TRIG_COUPLING	ACQUISITION	Sets the coupling mode of the specified trigger source.
TRDL	TRIG_DELAY	ACQUISITION	Sets the time at which the trigger is to occur.
TRLV	TRIG_LEVEL	ACQUISITION	Adjusts the trigger level of the specified trigger source.
TRLV2	TRIG_LEVEL2	ACQUISITION	Adjusts the second trigger level of the specified

			trigger source.
TRMD	TRIG_MODE	ACQUISITION	the trigger mode.
TRSE	TRIG_SELECT	ACQUISITION	Selects the condition that will trigger acquisition.
TRSL	TRIG_SLOPE	ACQUISITION	Sets the trigger slope of the specified trigger source.
TRWI	TRIG_WINDOW	ACQUISITION	Return relative height of the trigger window
TRPA	TRIG_PATTERN	ACQUISITION	Sets the condition of the pattern trigger
UNIT	UNIT	ACQUISITION	Sets the unit of specified trace.
VPOS	VERT_POSITION	DISPLAY	Adjusts the vertical position of the FFT trace.
VDIV	VOLT_DIV	ACQUISITION	Sets the vertical sensitivity.
WF	WAVEFORM	WAVEFORMTRANS	Gets the waveform from the instrument.
WFSU	WAVEFORM_SETUP	WAVEFORMTRANS	Specifies amount of waveform data to go to controller.
WAIT	WAIT	ACQUISITION	Prevents new analysis until current has been completed.
XYDS	XY_DISPLAY	DISPLAY	Enables or disables to display the XY format

Commands & Queries

ACQUISITION

ACQUIRE_WAY,ACQW

Command /Query

DESCRIPTION The ACQUIRE_WAY command specifies the

acquisition mode.

The ACQUIRE WAY? Query returns the

current acquisition mode.

COMMAND SYNTAX ACQUIRE_WAY <mode>[,<time>]

<mode> :=

{ SAMPLING, PEAK DETECT, AVERAGE,

HIGH_RES }

<time> := {4, 16, 32, 64,128,256,512,1024} Note: The <time> parameter only can be set with

the average acuisition mode.

QUERY SYNTAX ACQUIRE_WAY?

RESPONSE FORMAT ACQUIRE_WAY <mode>[,<time>]

EXAMPLE The following command sets the acquisition mode

to average mode, and also sets the average time to 16.

Command message: ACQW AVERAGE,16

RELATED COMMANDS AVGA, PDET

STATUS

ALL_STATUS?, ALST? Query

DESCRIPTION

The ALL_STATUS? Query reads and clears the contents of all status registers: STB, ESR, INR, DDR, CMR, EXR and URR except for the MAV bit (bit 6) of the STB register. For an interpretation of the contents of each register, refer to the appropriate status register.

The ALL_STATUS? Query is useful in a complete overview of the state of the instrument.

QUERY SYNTAX

AL1 STatus?

RESPONSE FORMAT

ALl STatus

 \leq value \geq : = 0 to 65535

EXAMPLE

The following instruction reads the contents of all the status registers:

Command message:

ALST?

Response message:

ALST STB, 0, ESR, 52, INR, 5, DDR, 0, CMR, 4,

EXR, 24, URR, 0

RELATED COMMANDS

*CLS, CMR?, DDR?, *ESR?, EXR?, *STB?, URR?

ACQUISITION

ARM_ACQUISITION, ARM

Command

DESCRIPTION The ARM_ACQUISITION command enables the

signal acquisition process by changing the acquisition state (trigger mode) from "stopped" to

"single".

COMMAND SYNTAX ARM acquisition

EXAMPLE The following command enables signal acquisition:

Command message:

ARM

RELATED COMMANDS STOP, *TRG, TRIG_MODE, WAIT

ACQUISITION

ATTENUATION, ATTN

Command /Query

DESCRIPTION The ATTENUATION command selects the vertical

attenuation factor of the probe. Values of 1, 5, 10, 50,

100, 500, and 1000 may be specified.

The ATTENUATION? Query returns the attenuation factor of the specified channel.

COMMAND SYNTAX <channel>: ATTeNuation <attenuation>

<channel> : = {C1, C2, C3, C4}

<attenuation>: = {1, 5, 10, 50, 100, 500, 1000}

QUERY SYNTAX <channel>: ATTeNuation?

RESPONSE FORMAT <channel>: ATTeNuation <attenuation>

EXAMPLE The following command sets to 100 the

attenuation factor of Channel 1:

Command message: C1:ATTN 100

MISCELLANEOUS

AUTO_CALIBRATE, ACAL

Command /Query

DESCRIPTION

The AUTO_CALIBRATE command is used to enable or disable the quick calibration of the instrument.

The quick calibration may be disabled by issuing the command ACAL OFF. Whenever it is convenient, a *CAL? Query may be issued to fully calibrate the oscilloscope.

The response to the AUTO_CALIBRATE?

Query indicates whether quick -calibration is enabled.

The command is only used in the CFL series

instrument.

COMMAND SYNTAX

Auto_CALibrate <state> <state> := {ON, OFF}

OUERY SYNTAX

Auto_CALibrate?

RESPONSE FORMAT

Auto_CALibrate <state>

EXAMPLE

The following instruction disables quick-calibration:

Command message:

ACAL OFF

RELATED COMMANDS

*CAL?

ACQUISITION

AUTO_SETUP, ASET

Command

DESCRIPTION The AUTO SETUP command attempts to identify

the waveform type and automatically adjusts controls

to produce a usable display of the input signal.

COMMAND SYNTAX AUTO SETUP

EXAMPLE The following command instructs the oscilloscope

to perform an auto-setup:

Command message:

ASET

RELATED COMMANDS AUTTS

ACQUISITION

AUTO_TYPESET, AUTTS

Command /Query

DESCRIPTION

The AUTO_TYPESET command selects the specified type of automatically adjusting which is

used to display.

COMMAND SYNTAX

AUTO TYPESET <type>

<type>: = $\{SP,MP,RS,DRP,RC\}$

SP means only one period to be displayed, MP means multiple periods to be displayed, RS means the waveform is triggered on the rise side, DRP means the waveform is triggered on the drop side, and RC means to go back to the state before auto set.

QUERY SYNTAX

AUTO TYPESET?

RESPONSE FORMAT

AUTO_TYPESET <type>

EXAMPLE

The following command sets the type of automatic

adjustment to multiple periods:

Command message:

AUTTS MP

RELATED COMMANDS

ASET

ACQUISITION AVERAGE_ACQUIRE, AVGA
Command /Query

DESCRIPTION The AVERAGE_ACQUIRE command selects the

average times of average acquisition.

The response to the AVERAGE_ACQUIRE query

indicates the times of average acquisition.

COMMAND SYNTAX AVERAGE_ACQUIRE <time>

<time> : = {4, 16, 32, 64,128,256,512,1024}

QUERY SYNTAX AVERAGE_ACQUIRE?

RESPONSE FORMAT AVERAGE_ACQUIRE <time>

EXAMPLE The following turns the average times of average

acquisition 16:

Command message:

AVGA 16

ACQUISITION

BANDWIDTH_LIMIT, BWL

Command /Query

DESCRIPTION

BANDWIDTH_LIMIT enables or disables the bandwidth-limiting low-pass filter. If the bandwidth filters are on, it will limit the bandwidth to reduce display noise. When you turn Bandwidth Limit ON, the Bandwidth Limit value is set to 20 MHz. It also filters the signal to reduce noise and other unwanted high frequency components.

The response to the BANDWIDTH_LIMIT? Query indicates whether the bandwidth filters are on or off.

COMMAND SYNTAX

BandWidth_Limit <channel>, <mode>
[, <channel>, <mode> [, <channel>, <mode>
[, <channel>, <mode>]]]

<channel> : = {C1, C2, C3, C4}
<mode>: = {ON, OFF}

QUERY SYNTAX

BandWidth_Limit?

RESPONSE FORMAT

BandWidth_Limit <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode> [, <channel>, <mode> []]

EXAMPLE

The following turns on the bandwidth filter for all channels, when Global BWL is on (as it is by default

The following turns the bandwidth filter on for Channel 1 only:

Command message: BWL C1, ON

MISCELLANEOUS

BUZZER, BUZZ

Command /Query

DESCRIPTION The BUZZER command enables or disables sound

switch.

The response to the BUZZER? query indicates

whether the sound switch is enabled.

COMMAND SYNTAX BUZZer <state>

<state>: = {ON, OFF}

QUERY SYNTAX BUZZER?

RESPONSE FORMAT BUZZER <state>

EXAMPLE Sending the following code will let the oscilloscope

turn on the sound switch.

Command message:

BUZZ ON

MISCELLANEOUS

*CAL?

Query

DESCRIPTION The *CAL? query cause the oscilloscope to perform

an internal self-calibration and generates a response.

QUERY SYNTAX *CAL?

RESPONSE FORMAT *CAL <diagnostics>

<diagnostics>: = 0

0 = Calibration successful

EXAMPLE The following instruction forces a self-calibration:

Command message:

*CAL?

Response message:

*CÂL 0

RELATED COMMANDS AUTO CALIBRATE

COMMUNICATION

COMM_HEADER, CHDR

Command/ Query

DESCRIPTION

The COMM_HEADER command controls the way the oscilloscope formats responses to queries. There are three response formats: LONG, in which responses start with the long form of the header word; SHORT, where responses start with the short form of the header word; and OFF, for which headers are omitted from the response and units in numbers are suppressed.

Unless you request otherwise, the SHORT response format is used.

This command does not affect the interpretation of messages sent to the oscilloscope. Headers can be sent in their long or short form regardless of the COMM HEADER setting.

Querying the vertical sensitivity of Channel 1 may result in one of the following responses:

COMM HEADER RESPONSE

LONG C1:VOLT_DIV 200E-3 V SHORT C1:VDIV 200E-3 V

SHORT CITYDIV 2

OFF 200E-3

COMMAND SYNTAX

QUERY SYNTAX

Comm HeaDeR <mode>

<mode>: = {SHORT, LONG, OFF}

Comm HeaDeR?

RESPONSE FORMAT EXAMPLE

Comm HeaDeR < mode>

The following code sets the response header format

to SHORT:

Command message:

CHDR SHORT

*CLS

Command

DESCRIPTION The *CLS command clears all the status data

registers.

COMMAND SYNTAX *CLS

EXAMPLE The following command causes all the status data

registers to be cleared:

Command message:

*CLS

RELATED COMMANDSALL_STATUS, CMR, DDR, *ESR, EXR, *STB, URR

STATUS CMR?

DESCRIPTION The CMR? Query reads and clears the contents of

the Command error Register (CMR) see table next page---which specifies the last syntax error

type detected by the instrument.

QUERY SYNTAX CMR?

RESPONSE FORMAT CMR <value>

<value> : = 0 to 14

EXAMPLE The following instruction reads the contents of

the CMR register:

Command message:

CMR?

Response message:

CMR 0

RELATED COMMANDS ALL STATUS? ,*CLS

ADDITIONAL INFORMATION

Command Error Status Register Structure (CMR)

Command Err	ror Status Register Structure (CMR)
Value	Description
1	Unrecognized command/query header
2	Invalid character
3	Invalid separator
4	Missing parameter
5	Unrecognized keyword
6	String error
7	Parameter cannot allowed
8	Command String Too Long
9	Query cannot allowed
10	Missing Query mask
11	Invalid parameter
12	Parameter syntax error
13	Filename too long

MISCELLANEOUS

COMM_NET, CONET

Command /Query

DESCRIPTION The COMM_NET command changes the IP

address of the oscilloscope's internal network

interface.

The COMM_NET? query returns the IP address of the oscilloscope's internal network interface.

COMMAND SYNTAX COMM NET <ip add0>, <ip add1>,

<ip_add2>, <ip_add3>

< ip_add >:= 0 to 255

QUERY SYNTAX COMM NET?

RESPONSE FORMATCOMM NET <ip add0>, <ip add1>,

 $\langle ip_add2 \rangle$, $\langle ip_add3 \rangle$

EXAMPLE This instruction will change the IP address to

10.11.0.230:

Command message: CONET 10,11,0,230

ACQUISITION

COUPLING, CPL

Command /Query

DESCRIPTION The COUPLING command selects the

coupling mode of the specified input channel.

The COUPLING? query returns the coupling

mode of the specified channel.

COMMAND SYNTAX channel>: CouPLing coupling>

<channel>: = {C1, C2, C3, C4}

<coupling> := {A1M, A50, D1M, D50, GND} The A of the <coupling> is alternating current. The D of the <coupling> is direct current.1M and 50 is the impedance of input. Some series

(CML) couldn't have the set of input

impedance.

QUERY SYNTAX <channel>: CouPLing?

RESPONSE FORMAT <channel>: CouPLing <coupling>

EXAMPLE The following command sets the coupling of

Channel 2 to 50 QDC:

Command message: C2: CPL D50

CURSOR_MEASURE, CRMS

Command /Query

DESCRIPTION The CURSOR_MEASURE command

specifies the type of cursor or parameter

measurement to be displayed

The CURSOR_MEASURE? query indicates which cursors or parameter measurements are

currently displayed.

COMMAND SYNTAX CuRsor MeaSure <mode>

<mode>={ OFF,ON}

QUERY SYNTAX CuRsor MeaSure?

RESPONSE FORMAT CuRsor MeaSure <mode>

EXAMPLE The following command determines cursor

function is turned off:

Command message:

CRMS OFF

RELATED COMMANDS CURSOR VALUE, PARAMETER VALUE

CURSOR

CURSOR_SET, CRST

Command /Query

DESCRIPTION

The CURSOR_SET command allows the user to position any one of the eight independent cursors at a given screen location. The positions of the cursors can be modified or queried even if the required cursor is not currently displayed on the screen. When setting a cursor position, a trace must be specified, relative to which the cursor will be positioned.

The CURSOR_SET? Query indicates the current position of the cursor(s). The values returned depend on the grid type selected.

Notation		
VREF	The volt-value of curA under manual cursor mode	
VDIF	The volt -value of curB under manual cursor mode	
TREF	The time value of curA under manual cursor mode	
TDIF	The time value of curB under manual cursor mode	

COMMANDSYNTAX

<trace>:CuRsor_SeT<cursor>,<position>[,<cursor>,<position>]

< trace > : = {C1, C2, C3, C4}

<cursor> : ={ VREF,VDIF,TREF,TDIF}

<position>: = 0.1 to 13.9 DIV (horizontal of track, the range of the value is related to the size of the screen)

<position>: = -4 to 4 DIV (vertical)

QUERY SYNTAX

<trace>: CuRsor_SeT? [<cursor>, ...<cursor>]
<cursor> :={ VREF, VDIF, TREF, TDIF}

RESPONSE FORMAT <trace>:CuRsor_SeT <cursor>, <position>[,

<cursor>, <position>, <cursor>, <position>]

EXAMPLE The following command positions the VREF

and VDIF cursors at +3 DIV and -1 DIV

respectively, using C1 as a reference:

Command message:

C1: CRST VREF, 3DIV, VDIF, -1DIV

RELATED COMMANDS CURSOR_MEASURE, CURSOR_VALUE,

PARAMETER_VALUE

CURSOR

CURSOR_VALUE?, CRVA?

Query

DESCRIPTION

The CURSOR_VALUE? Query returns the values measured by the specified cursors for a given trace. (The PARAMETER_VALUE? query is used to obtain measured waveform parameter values.)

Notation		
HREL	the cursor value under track cursor mode	
VREL	the dalta volt-value under manual cursor mode	

> <trace> : = { C1, C2, C3, C4} <mode> : = { HREL, VREL }

RESPONSE FORMAT <trace>: CuRsor Value HREL,

<delta_hori>,<delta_vert>,<A->T>, <A->V>,<(delta_vert)/(delta_hori)>

<trace> : CuRsor Value VREL, <delta vert>

EXAMPLE The following query reads the dalta volt value

under manual cursor mode (VREL) on

Channel 2:

Command message: C2:CRVA? VREL

Response message:

C2:CuRsor Value VREL 1.00V

RELATED COMMANDS

CURSOR SET, PARAMETER VALUE

SAVE/RECALL

CSV_SAVE, CSVS

Command /Query

DESCRIPTION The CSV_SAVE command selects the specified

option of storing CSV format waveform.

The CSV SAVE? query returns the option of

storing waveform data of CSV format.

COMMAND SYNTAX CSV SAVE SAVE, < state>

The option SAVE is that if the waveform data is

stored with parameter. <save>: = {OFF, ON}

QUERY SYNTAX CSV SAVE?

RESPONSE FORMAT CSV SAVE SAVE, <state>

EXAMPLE The following command sets "para" save to off

Command message: CSV_SAVE SAVE,OFF

FUNCTION

CYMOMETER, CYMT

DESCRIPTION

The response to the CYMOMETER? query is the value of cymometer which displaying on the screen of the instrument. When the signal frequency is less than 10Hz, it returns 10Hz.

QUERY SYNTAX

CYMOMETER?

RESPONSE FORMAT

CYMOMETER <option>

EXAMPLE

The following instruction returns the value of cymometer which displaying on the screen of the instrument.

Response message: CYMT 10Hz

MISCELLANEOUS

DATE

Command /Query

DESCRIPTION

The DATE command changes the date/time of the

oscilloscope's internal real-time clock.

The command is only used in the CFL series

instrument.

COMMAND SYNTAX

DATE <day>, <month>, <year>, <hour>,

<minute>, <second>

<day> : = 1 to 31

<month> : = {JAN, FEB, MAR, APR, MAY,

JUN, JUL, AUG, SEP,OCT, NOV, DEC}

<year> : = 1990 to 2089 <hour> : = 0 to 23

<minute> : = 0 to 59 <second> : = 0 to 59

QUERY SYNTAX

RESPONSE FORMAT

DATE?

DATE <day>, <month>, <year>, <hour>, <minute>, <second>

EXAMPLE

This instruction will change the date to

NOV. 1, 2009 and the time to 14:38:16:

Command message:

DATE 1, NOV, 2009, 14, 38, 16

34

STATUS DDR?

DESCRIPTION The DDR? Query reads and clears the contents of

the Device Dependent or device specific error Register (DDR). In the case of a hardware failure, the DDR register specifies the origin of

the failure.

QUERY SYNTAX DDR?

RESPONSE FORMAT DDR <value>

<value> : = 0 to 65535

EXAMPLE The following instruction reads the contents of

the DDR register:

Command message:

DDR?

Response message:

DDR 0

RELATED COMMANDS ALL STATUS? ,*CLS

FUNCTION

DEFINE, DEF

Command /Query

DESCRIPTION The DEFINE command specifies the mathematical

expression to be evaluated by a function.

COMMAND SYNTAX DEFine EQN,'<equation>'

<equation> the mathematical expression

Function Equations		
<source1> + <source2></source2></source1>	Addition	
<source1> - <source2></source2></source1>	Subtraction	
<source1>*<source2></source2></source1>	Multiplication	
<source1>/<source2></source2></source1>	Ratio	
FFT(source x)	FFT	
INTG(source x)	Integral	
DIFF(source x)	Differentiator	
SQRT(source x)	Square Root	

QUERY SYNTAX DEFine?

RESPONSE FORMAT DEFine EQN,'<equation>'

EXAMPLE

Command message: DEFine EQN,'C1*C2'

MASS STORAGE

DELETE_FILE, DELF

Command

DESCRIPTION The DELETE_FILE command deletes files

from the currently selected directory on mass

storage.

COMMAND SYNTAX DELete File DISK, <device>, FILE,

'<filename>'

<device>: ={UDSK}

<filename>: = a file of specified directory and the specified file should up to eight characters.

EXAMPLE The following command deletes a front-panel

setup from the directory named SETUP in a

USB memory device:

Command message:

DELF DISK, UDSK, FILE, '/ SETUP

/001.SET'

RELATED COMMANDS DIRECTORY

MASS STORAGE

DIRECTORY, DIR

Command /Query

DESCRIPTION

The DIRECTORY command is used to manage the creation and deletion of file directories on mass storage devices. It also allows selection of the current working directory and listing of files in the directory.

The query response consists of a double-quoted string containing a DOS-like listing of the directory.

COMMAND SYNTAX

Directory DISK, <device>, ACTION, <action>,

'<directory>'

QUERY SYNTAX

Directory? DISK, <device>[, '<directory>']

<device>: ={UDSK}

<action>: ={CREATE, DELETE}

< directory >: = A legal DOS path or filename. (This can include the '/' character to define the

root directory.)

RESPONSE FORMAT

DIRectory DISK. <device> "<directory>"

EXAMPLE

The following asks for a listing of the directory of a USB memory device:

Command message: DIR? DISK, UDSK

Response message:

DIRectory DISK, UDSK, "A:

SDS2000 SDS2000AA

BB.SET 2.00 KB 2.00 KB SDS00001.SET SDS00002 SET $2.00 \, \mathrm{KB}$

3 File(s), 2 DIR(s)

RELATED COMMANDS

DELF

DISPLAY

DOT_JOIN, DTJN

Command /Query

DESCRIPTION The DOT JOIN command controls the

interpolation lines between data points.

COMMAND SYNTAX DoT JoiN <state>

 $\langle \text{state} \rangle := \{\text{ON, OFF}\}$

QUERY SYNTAX DoT_JoiN?

RESPONSE FORMAT DoT JoiN <state>

EXAMPLE The following instruction turns off the

interpolation lines:

Command message:

DTJN OFF

STATUS *ESE

Command /Query

DESCRIPTION The *ESE command sets the Standard Event

Status Enable register (ESE). This command allows one or more events in the ESR register to be reflected in the ESB summary message

bit (bit 5) of the STB register.

COMMAND SYNTAX *ESE <value>

<value> : = 0 to 255

QUERY SYNTAX *ESE?

RESPONSE FORMAT *ESE < value>

EXAMPLE The following instruction allows the ESB bit to

be set if a user request (URQ bit 6, i.e. decimal 64) and/or a device dependent error (DDE bit 3, i.e. decimal 8) occurs. Summing these values yields the ESE register mask

64+8=72.

Command message:

*ESE 72

RELATED COMMANDS *ESR

*ESR? Query

DESCRIPTION The *ESR? query reads and clears the contents

of the Event Status Register (ESR). The response represents the sum of the binary

values of the register bits 0 to 7.

QUERY SYNTAX *ESR?

RESPONSE FORMAT *ESR <value>

<value> : = 0 to 255

EXAMPLE The following instruction reads and clears the

contents of the ESR register:

Command message:

*ESR?

Response message:

*ESR 0

RELATED COMMANDS ALL STATUS, *CLS, *ESE

ADDITIONAL INFORMATION

Standard Event Status Register (ESR)								
Bit	Bit Value	Bit Name	Description Note					
15~8			0	reserved by IEEE 488.2				
7	128	PON	1	Power off-to-ON transition as occurred	(1)			
6	64	URQ	1	User Request has been issued	(2)			
5	32	CME	1	Command parser Error has been detected	(3)			
4	16	EXE	1	Execution Error detected	(4)			
3	8	DDE	1	Device specific Error occurred	(5)			
2	4	QYE	1	Query Error occurred	(6)			
1	2	RQC	1	Instrument never requests bus control	(7)			
0	1	OPC	1	Instrument never requests bus control	(8)			

Notes

- (1) The Power On (PON) bit is always turned on (1) when the unit is powered up.
- (2) The User Request (URQ) bit is set true (1) when a soft key is pressed. An associated register URR identifies which key was selected. For further details refer to the URR? query.
- (3) The CoMmand parser Error bit (CME) is set true (1) whenever a command syntax error is detected. The CME bit has an associated CoMmand parser Register (CMR) which specifies the error code. Refer to the query CMR? for further details.
- (4) The EXecution Error bit (EXE) is set true (1) when a command cannot be executed due to some device condition (e.g. oscilloscope in local state) or a semantic error. The EXE bit has an associated Execution Error Register (EXR) which specifies the error code. Refer to query EXR? for further details.
- (5) The Device specific Error (DDE) is set true (1) whenever a hardware failure has occurred at power-up, or execution time, such as a channel overload condition, a trigger or a timebase circuit defect. The origin of the failure may be localized via the DDR? or the self test *TST? query.
- (6) The Query Error bit (QYE) is set true (1) whenever (a) an attempt is made to read data from the Output Queue when no output is either present or pending, (b) data in the Output Queue has been lost, (c) both output and input buffers are full (deadlock state), (d) an attempt is made by the controller to read before having sent an <END>, (e) a command is received before the response to the previous query was read (output buffer flushed).
- (7) The ReQuest Control bit (RQC) is always false (0), as the oscilloscope has no GPIB controlling capability.
- (8) The OPeration Complete bit (OPC) is set true (1) whenever *OPC has been received, since commands and queries are strictly executed in sequential order. The oscilloscope starts processing a command only when the previous command has been entirely executed.

*EXR? Query

DESCRIPTION The EXR? query reads and clears the contents

of the Execution error Register (EXR). The EXR register specifies the type of the last

error detected during execution.

QUERY SYNTAX EXR?

RESPONSE FORMAT EXR <value>

<value> : = to

EXAMPLE The following instruction reads the contents

of the EXR register:

Command message:

EXR?

Response message (if no fault):

EXR 0

RELATED COMMANDS ALL STATUS, *CLS

ADDITIONAL INFORMATION

Execution Error Status Register Structure (EXR)						
Value	Description					
21	Permission error. The command cannot be executed in local mode.					
22	Environment error. The instrument is not configured to correctly process a command. For instance, the oscilloscope cannot be set to RIS at a slow timebase.					
23	Option error. The command applies to an option which has not been installed.					
25	Parameter error. Too many parameters specified.					
26	Non-implemented command.					
32	Waveform descriptor error. An invalid waveform descriptor has been detected.					
36	Panel setup error. An invalid panel setup data block has been detected.					
50	No mass storage present when user attempted to access it.					
53	Mass storage was write protected when user attempted to create, or a file, to delete a file, or to format the device.					
58	Mass storage file not found.					
59	Requested directory not found.					
61	Mass storage filename not DOS compatible, or illegal filename.					
62	Cannot write on mass storage because filename already exists.					

MASS STORAGE

FILENAME, FLNM

Command /Query

DESCRIPTION The FILENAME command is used to change the

default filename given to any traces, setups and hard copies when they are being stored to a mass

storage device.

COMMAND SYNTAX FiLeNaMe TYPE, <type>, FILE, '<filename>'

<type>:={ C1,C2,C3, C4, SETUP,TA, TB, TC,

TD, HCOPY}

<filename> : = an alphanumeric string of up to 8

characters forming a legal DOS filename.

Note: the file's extension can be specified automatically by the oscilloscope.

QUERY SYNTAX FiLeNaMe? TYPE, <type>

<type> :={ ALL, C1, C2, C3, C4, SETUP, TA,

TB, TC, TD, HCOPY}

RESPONSE FORMAT FiLeNaMe TYPE, <type>, FILE, "<filename>"

[,TYPE, <type>, FILE, "<filename>"...]

EXAMPLE The following command designates channel 1

waveform files to be "TESTWF.DAV":

Command message:

FLNM TYPE, C1. FILE, 'TESTWF'

RELATED COMMANDS DIRECTORY, DELETE_FILE

MASS STORAGE

FORMAT_VDISK, FVDISK

Querv

DESCRIPTION The FORMAT_VDISK? query reads the

capability of the USB memory device.

QUERY SYNTAX Format VDISK?

RESPONSE FORMAT Format VDISK <capability>

<capability>:= the capability of the USB

memory device.

EXAMPLE The following query reads the capability of the

USB device.

Command message: Format VDISK?

Response message: Format VDISK 963 MB

FFT_WINDOW, FFTW

Command /Query

DESCRIPTION The FFT_WINDOW command selects the

window of FFT(Fast Fourier Transform

algorithm).

The response to the FFT_WINDOW? query

indicates current window of FFT

COMMAND SYNTAX FFT WINDOW < window >

 $< window > := \{RECT, BLAC, HANN, HAMM\}$

RECT is short for rectangle. BLAC is short for Blackman. HANN is short for hanning. HAMM is short for hamming,

QUERY SYNTAX FFT WINDOW?

RESPONSE FORMAT FFT WINDOW, < window >

EXAMPLE The following command sets the FFT window

to hamming:

Command message: FFTW HAMM

FFT_ZOOM, FFTZ

Command /Query

DESCRIPTION The FFT_ZOOM command selects the specified

zoom of FFT.

The response to the FFT_ZOOM? query indicates current zoom in/out times of FFT

COMMAND SYNTAX FFT_ZOOM <zoom>

 $< zoom > := \{1,2,5,10\}$

QUERY SYNTAX FFT ZOOM?

RESPONSE FORMAT FFT ZOOM, <zoom>

EXAMPLE The following command sets the zoom factor of

FFT to 1X:

Command message:

FFTZ 1

FFT_SCALE, FFTS

Command /Query

DESCRIPTION The FFT_SCALE command selects the specified

scale of FFT(Fast Fourier Transform algorithm).

The response to the FFT_SCALE? query indicates

current vertical scale of FFT waveform.

COMMAND SYNTAX FFT SCALE <scale>

 $< scale > := \{VRMS, DBVRMS\}$

QUERY SYNTAX FFT SCALE?

RESPONSE FORMAT FFT SCALE, < scale >

EXAMPLE The following command turns the vertical scale of

FFT to dBVrms:

Command message: FFTS DBVRMS

FFT_FULLSCREEN, FFTF

Command /Query

DESCRIPTION The FFT_FULLSCREEN command enables or

disables to display the FFT waveform full screen.

The response to the FFT_FULLSCREEN? query indicates whither the FFT waveform is full screen

displayed.

COMMAND SYNTAX FFT FULLSCREEN <state>

< state > : = {ON,OFF}

QUERY SYNTAX FFT FULLSCREEN?

RESPONSE FORMAT FFT FULLSCREEN < state >

EXAMPLE The following command enables to display the

FFT waveform full screen:

Command message:

FFTF ON

DISPLAY GRID_DISPLAY, GRDS

Command /Query

DESCRIPTION The GRID_DISPLAY command selects the

type of the grid which is used to display.

The response to the GRID_DISPLAY? query

indicates current type of the grid

COMMAND SYNTAX GRID DISPLAY <type>

< type > : = {FULL,HALF,OFF}

QUERY SYNTAX GRID_DISPLAY?

RESPONSE FORMAT GRID_DISPLAY < type >

EXAMPLE The following command changes the type of

grid to full grid:

Command message: GRID_DISPLAY FULL

WAVEFORMTRANS

GET_CSV, GCSV

Query

DESCRIPTION

indicates current waveform of CSV format.

The response to the GET_CSV? query

The GET_CSV? query have option to set. They are the same as the options of CSVS.

QUERY SYNTAX

GET CSV? SAVE, < state>

The option SAVE is that if

the waveform data have parameters.

 $\langle \text{save} \rangle := \{\text{OFF,ON}\}$

RESPONSE FORMAT

the waveform date of CSV format

EXAMPLE

The following command transfers the waveform data of CSV format to the controller. It has

parameters information.

Command message:
GET CSV? SAVE,ON

DISPLAY

HOR_MAGNIFY, HMAG

Command /Query

DESCRIPTION

The HOR_MAGNIFY command horizontally expands the selected expansion trace by a specified factor. Magnification factors not within the range of permissible values will be rounded off to the closest legal value.

If the specified factor is too large for any of the expanded traces (depending on their current source), it is reduced to an acceptable value and only then applied to the traces. The VAB bit (bit 2) in the STB register is set when a factor outside the legal range is specified.

The HOR_MAGNIFY query returns the current magnification factor for the specified expansion function.

COMMAND SYNTAX

<exp_trace>: Hor_MAGnify <factor>
<exp_trace>: = {TA, TB, TC, TD}
<factor> : = 1 to 2.000.000 The range of

<factor > it is related to the current timebase
and the range of the timebase

S

QUERY SYNTAX

EXAMPLE

<exp_trace> : Hor_MAGnify?

RESPONSE FORMAT

<exp_trace>: Hor_MAGnify <factor>

The following instruction horizontally magnifies Trace A (TA) by a factor of 5:

Command message: TA: HMAG 5.00

RELATED COMMANDS

HPOS

DISPLAY

HOR_POSITION, HPOS

Command /Query

DESCRIPTION

The HOR_POSITION command horizontally positions the geometric center of the intensified zone on the source trace. Allowed positions range from division -7 to 7. If this would cause the horizontal position of any expanded trace to go outside the left or right screen boundaries, the difference of positions is adapted and then applied

to the traces.

The VAB bit (bit 2) in the STB register is set if a value outside the legal range is specified.

The HOR_POSITION query returns the position of the geometric center of the intensified zone on the source trace.

COMMAND SYNTAX

<exp_trace>: Hor_POSition <hor_position>
<exp_trace>: = {TA, TB, TC, TD}
<hor_position>: = -7 to 7 DIV(The range of the value is related to the size of the screen). the range of the <hor_position> is related to the magnification factors of command HMAG. While the range after magnifying beyond the screen could display, it will be adjusted to the proper value.

QUERY SYNTAX

<exp trace>: Hor POSition?

RESPONSE FORMAT

<exp_trace>: Hor_POSition <hor_position>

EXAMPLE

The following instruction positions the center of the intensified zone on the trace currently viewed

by Trace A (TA) at division 3:

Command message: TA: HPOS 3

RELATED COMMANDS

HMAG

HARD COPY

HARDCOPY_SETUP, HCSU

Command /Query

DESCRIPTION

The HARDCOPY_SETUP command configures the instrument's hard-copy driver.

COMMAND SYNTAX

HCSU PSIZE, <page size>,

ISIZE, <image_size>, FORMAT, <format>, BCKG, <bckg>, PRTKEY, <printkey>

<page_size> :={ DEFAULT}
<printkey>:={SAVE,PRINT}

<firm(c) : {SAVE, REALTY LANDSCAPE}</pre>

<bckg>:= {BLACK, WHITE}
<image size>:={DEFAULT,A4,LETTER}.

QUERY SYNTAX

HCSU?

RESPONSE FORMAT

HCSU PSIZE, <page_size>, ISIZE, <image_size>, FORMAT, <format>, BCKG,

<bckg>, PRTKEY, <printkey>

EXAMPLE

The following example selects PORTRAIT format, sets the size of the image to "6*8CM":

Command message:

HCSU ISIZE, 6*8CM, FORMAT,

PORTRAIT

RELATED COMMANDS

SCDP

MISCELLANEOUS

*IDN? Query

DESCRIPTION

The *IDN? query is used for identification purposes`. The response consists of four different fields providing information on the manufacturer, the scope model, the serial number and the firmware revision level.

QUERY SYNTAX

*IDN?

RESPONSE FORMAT

*IDN SIGLENT, <model>, <serial_number>,

<firmware_level>

<model> : = A eleven characters model identifier

<serial_number> : = A 14-digit decimal code
<firmware_level> : = similar to k.xx.yy.zz

EXAMPLE

This example issues an identification request to the scope:

Command message:

*IDN?

Response message:

*IDN

 $SIGLENT\ SDS1102CML, SDS00002110025,$

3.01.01.22

DISPLAY

INTENSITY, INTS

Command /Query

DESCRIPTION

The INTENSITY command sets the intensity level of the grid or the trace.

The intensity level is expressed as a percentage (PCT). A level of 100 PCT corresponds to the maximum intensity whilst a level of 0 PCT sets the intensity to its minimum value. (The minimum value of the trace is 30 PCT)

The response to the INTENSITY? Query indicates the grid and trace intensity levels.

COMMAND SYNTAX

INTenSity GRID, <value>, TRACE, <value> <value> : = 0(or 30) to 100 [PCT]

Note 1: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and be restricted to those variables to be changed.

Note 2: The suffix PCT is optional.

QUERY SYNTAX

INTenSity?

RESPONSE FORMAT

INTenSity TRACE, <value>, GRID, <value>

EXAMPLE

The following instruction enables remote control of the intensity, and changes the grid intensity level to 75%:

Command message: INTS GRID, 75

STATUS INR?

DESCRIPTION

The INR? query reads and clears the contents of the INternal state change Register(INR). The INR register (table below) records the completion of various internal operations and state transitions.

Note: This command only supports 0 bit and 13 bit

Internal State Register Structure (INR)					
Bit	Bit	Description			
	Value	<u>^</u>			
1514		0	Reserved for future use		
13	8192	1	Trigger is ready		
12	4096	1	Pass/Fail test detected desired outcome		
11	2048	1	1 Waveform processing has terminated in Trace D		
10	1024	1	Waveform processing has terminated in Trace C		
9	512	1	Waveform processing has terminated in Trace B		
8	256	1	Waveform processing has terminated in Trace A		
7	128	1	A memory card, floppy or hard disk exchange has been detected		
6	64	1	Memory card, floppy or hard disk has become full in "AutoStore		
			Fill" mode		
5	32	0	Reserved for LeCroy use		
4	16	1	A segment of a sequence waveform has been acquired		
3	8	1	A time-out has occurred in a data block transfer		
2	4	1	A return to the local state is detected		
1	2	1	A screen dump has terminated		
0	1	1	A new signal has been acquired		

QUERY SYNTAX INR?

RESPONSE FORMAT INR <value>

<value> : = 0 to 65535

EXAMPLE If we send INR? query after have triggered

the INR register:

Command message1:

INR?

Response message1: INR 8913

If we send INR? query while the instrument didn't trigger, the INR register:

Command message2:

INR?

Response message2:

INR 8912

If we send INR? query after have sent a INR? query and the mode of the instrument is STOP The INR register:

Command message3:

INR?

Response message3:

INR 0

If we send INR? query while there is no and then make the instrument triggered. Finally we send another INR? query the INR register:

Command message4:

INR?

Response message4:

INR 1

RELATED COMMANDS

ALL STATUS?,*CLS

DISPLAY

INVERTSET, INVS

Command /Query

DESCRIPTION The INVERTSET command inverts the

specified traces or the waveform of math.

The response to the INVERTSET? query indicates whether the specified waveform is

invert.

COMMAND SYNTAX <trace>:INVERTSET < state >

< trace > : = {C1,C2,C3,C4,MATH}

< state >:= {ON,OFF}

QUERY SYNTAX <trace>:INVERTSET?

RESPONSE FORMAT <trace>:INVERTSET < state >

EXAMPLE The following instruction inverts the trace of

channel 1:

Command message: C1:INVS ON

MISCELLANEOUS

LOCK, LOCK

Command /Query

DESCRIPTION

The LOCK command enables or disables the panel keyboard of the instrument.

When any command or query is executed in either local or remote state, the functions of the panel keys except "FORCE" are not available. When the panel keyboard of the instrument is locked, press "FORCE" key can enable the panel keyboard function.

The LOCK? query returns the status of the panel keyboard of the instrument.

COMMAND SYNTAX

LOCK < status > <status>:= {ON,OFF}

QUERY SYNTAX

LOCK?

RESPONSE FORMAT

LOCK < status >

EXAMPLE

The following instruction enables the functions of the panel keys:

Command message:

LOCK ON

ACQUISITION

MATH_VERT_POS, MTVP

Command /Query

DESCRIPTION

The MATH_VERT_POS command controls the vertical position of the math waveform with specified source.

The FFT waveform isn't included. But we have another command which called VPOS to control its vertical position.

The response to the MATH_VERT_POS? query indicates the value of the vertical position of the math waveform.

COMMAND SYNTAX

MATH_VERT_POS <position> <position>:= the position is related to the position of the screen center. For example, if we set the position of MTVP to 50. The math waveform will be displayed 1 grid up to the vertical center of the screen. Namely one grid is 50.

QUERY SYNTAX

MATH_VERT_POS?

RESPONSE FORMAT

MATH VERT POS < position >

EXAMPLE

The following instruction changes the vertical position of the math waveform to 1 grid up to the screen vertical centre:

Command message:

MTVP 50

ACQUISITION

MATH_VERT_DIV, MTVD

Command /Query

DESCRIPTION

The MATH_VERT_DIV command controls the vertical sensitivity of the math waveform of specified source. We can only set the value of existing

The FFT waveform isn't included.

The response to the MATH_VERT_DIV? query indicates the specified scale of math waveform of specified source.

COMMAND SYNTAX

MATH_VERT_DIV < scale > < scale >:= 1PV/div ~ 100V/div.

QUERY SYNTAX

MATH VERT DIV?

RESPONSE FORMAT

MATH_VERT_DIV < scale >

EXAMPLE

The following instruction changes the vertical sensitivity of the math waveform of specified source to 1V/div:

Command message:

MTVD 1V

MEMORY_SIZE, MSIZ
Command /Query

DESCRIPTION The MEMORY_SIZE command sets the

maximal depth of memory.

The response to the MEMORY SIZE? query

the maximal depth of memory.

COMMAND SYNTAX MEMORY SIZE <size>

 $\langle \text{size} \rangle := \{ 7K, 14K, 70K, 140K, 700K, \}$

1.4M,7M,14M}

QUERY SYNTAX MEMORY SIZE?

RESPONSE FORMAT MEMORY SIZE <size>

EXAMPLE The following instruction sets the maximal

depth of memory to 14M.

Command message:

MSIZ 14M

ACQUISITION

OFFSET, OFST

Command /Query

DESCRIPTION

The OFFSET command allows adjustment of the vertical offset of the specified input channel. The maximum ranges depend on the fixed sensitivity setting.

If an out-of-range value is entered, the oscilloscope is set to the closest possible value and the VAB bit (bit 2) in the STB register is set.

The OFFSET? query returns the offset value of the specified channel.

COMMAND SYNTAX

<channel>: OFfSeT <offset>
<channel> : = {C1, C2, C3,C4}

<offset> : = See the SDS2000 specifications.

QUERY SYNTAX

<channel>: OFfSeT?

RESPONSE FORMAT

<channel>: OFfSeT <offset>

EXAMPLE

The following command sets the offset of Channel 2 to -3 V:

Command message: C2: OFST -3V

*OPC

Command /Query

DESCRIPTION The *OPC (OPeration Complete) command

sets to true the OPC bit (bit 0) in the standard Event Status Register (ESR). This command has no other effect on the operation of the oscilloscope because the instrument starts parsing a command or query only after it has completely processed the previous command or query.

The *OPC? query always responds with the ASCII character "1" because the oscilloscope

only responds to the query when the previous command has been entirely executed.

COMMAND SYNTAX *OPC

QUERY SYNTAX *OPC?

RESPONSE FORMAT *OPC 1

MISCELLANEOUS

*OPT Query

DESCRIPTION

The *OPT? query identifies oscilloscope options: installed software or hardware that is additional to the standard instrument configuration. The response consists of a series of response fields listing all the installed options.

QUERY SYNTAX

*OPT?

RESPONSE FORMAT

*OPT <option>

NOTE: If no option is present, the character 0 will be returned.

EXAMPLE: The following instruction queries the installed options:

*OPT?

Return: *OPT RS232,NET,USBTMC

CURSOR

PARAMETER_CLR, PACL

Command

DESCRIPTION

COMMAND SYNTAX

The PARAMETER_CLR command clears the P/F

test counter and starts it again at 0.

PArameter_CLr

RELATED COMMANDS

PARAMETER_VALUE PFDD

CURSOR

PARAMETER_CUSTOM, PACU

Command /Query

DESCRIPTION

The PARAMETER_CUSTOM command controls the parameters that have customizable qualifiers.

Note: The measured value of a parameter setup with PACU may be read using PAVA?

COMMAND SYNTAX

PArameter_CUstom eparameter_s
eparameter>,
eparameter> := {PKPK, MAX, MIN, AMPL, TOP, BASE, CMEAN, MEAN, RMS, CRMS, OVSN, FPRE, OVSP, RPRE, PER, FREQ, PWID, NWID, RISE, FALL, WID, DUTY, NDUTY,PHASE,FRR,FFF,FFR,FFF,LRR,LR F,LFR,LFF }
equalifier> := {C1,C2,C3,C4,C1-C2,C1-

C3,C1-C4,C2-C3,C2-C4,C3-C4}
Measurement qualifier specific to each(source option)

QUERY SYNTAX

PArameter CUstom? <line>

RESPONSE FORMAT

PArameter_Custom <line>, <parameter>, <qualifier>

EXAMPLE

Command Example PACU 2, PKPK, C1
Query/Response Examples PACU 2, PKPK, C1

PAVA? CUST2 returns: C2: PAVA CUST2, 160.00mV

RELATED

COMMANDS PARAMETER_CLR, PARAMETER VALUE

CURSOR

PARAMETER_VALUE?, PAVA?

Query

DESCRIPTION

The PARAMETER_VALUE query returns the measurement values.

Parameters Available on All Models								
ALL	all parameters			NDUTY	7	negative duty cycle		
AMPL	amplitude			NWID		negative width		
BASE	base			OVSN		negative overshoot		
CMEAN	mean for cyclic waveform			OVSP		positive overshoot		
CRMS	root mean square for cyclic part of waveform			PKPK		peak-to-peak		
DUTY	dut	duty cycle				period		
FALL	falltime			RPRE (Vmin-Vbase)/ Va before the waveforising transition		e waveform		
FREQ	free	quency		PWID		positive width		
FPRE	(Vmin-Vbase)/ Vamp before the waveform falling transition			RMS root mean so		square		
MAX	ma	maximum			RISE		risetime	
MIN	minimum			TOP		top		
MEAN	an		WID width					
Custom Parameters Defined using PARAMETER_CUSTOM Command								
CUST1		CUST2	CU	ST3	C	UST4	CUST5	

QUERY SYNTAX

<trace>: PArameter VAlue? [<parameter>, ... ,

<parameter>]

<trace>: = { C1, C2, C3, C4}

<parameter> : = See table of parameter names

on previous table.

RESPONSE FORMAT

<trace>: PArameter_VAlue <parameter>, <value> [, ... , <parameter>, <value>]

EXAMPLE

The following query reads the risetime of

Channel 2

Command message:

C2: PAVA? RISE

Response message: C2: PAVA RISE, 3.6E-9S

RELATED COMMANDS

CURSOR_MEASURE, CURSOR_SET, PARAMETER_CUSTOM

PEAK_DETECT, PDET

Command /Query

DESCRIPTION The PEAK DETECT command switches ON

or OFF the peak detector built into the

acquisition system.

The PEAK DETECT? query returns the

current status of the peak detector.

COMMAND SYNTAX Peak DETect <state>

 $\langle \text{state} \rangle := \{\text{ON, OFF}\}$

QUERY SYNTAX Peak DETect?

RESPONSE FORMAT PDET <state>

EXAMPLE The following instruction turns on the peak

detector:

Command message:

PDET ON

DISPLAY

PERSIST, PERS Command /Query

DESCRIPTIONThe PERSIST command enables or disables the

persistence display mode.

COMMAND SYNTAX PERSist < mode>

<mode>: = {ON, OFF}

QUERY SYNTAX PERSist?

RESPONSE FORMAT PERSist <mode>

EXAMPLE The following code turns the persistence

display ON:

Command message:

PERS ON

RELATED COMMANDS PERSIST SETUP

DISPLAY

PERSIST_SETUP, PESU

Command /Query

DESCRIPTION The PERSIST_SETUP command selects the

persistence duration of the display, in

seconds, in persistence mode.

The PERSIST SETUP? query indicates the

current status of the persistence.

COMMAND SYNTAX PErsist SetUp <time>

<time>: ={1, 5, 10, 30,Infinite}

QUERY SYNTAX PErsist SetUp?

RESPONSE FORMAT PErsist SetUp <time>

EXAMPLE The following instruction sets the variable

persistence at 5 Seconds:

Command message:

PESU 5

RELATED COMMANDS PERSIST

PANEL_SETUP, PNSU

Command /Query

DESCRIPTION The PANEL SETUP command complements

the *SAV or *RST commands.

PANEL_SETUP allows you to archive panel setups in encoded form on external storage media. Only setup data read by the PNSU? query can be recalled into the oscilloscope.

COMMAND SYNTAX PaNel SetUp <setup>

 $\langle \text{setup} \rangle := \hat{A} \text{ setup previously read by PNSU?}$

QUERY SYNTAX PaNel SetUp?

RESPONSE FORMAT PaNel_SetUp <setup>

EXAMPLE The following instruction saves the scilloscope's

current panel setupin the file PANEL.SET:

Command message:

PNSU?

RELATED COMMANDS *RCL, *SAV

$PF_DISPLAY, PFDS$

Command /Query

DESCRIPTION The PF_DISPLAY command enables or

disables to turn the test and display the message

in the pass/fail option.

The response to the PF_DISPLAY? query indicates whether the test is enabled and the

message of pass/fail is displayed

COMMAND SYNTAX PF DISPLAY TEST, <state>, DISPLAY, <state>

 $\langle \text{state} \rangle := \{\text{ON, OFF}\}$

QUERY SYNTAX PF DISPLAY TEST?

RESPONSE FORMATPF DISPLAY TEST <state>, DISPLAY, <state>

EXAMPLE The following instruction enables to turn on the

test and display the message of pass/fail:

Command message:

PFDS TEST,ON,DISPLAY,ON

PF_SET, PFST

Command /Query

DESCRIPTION The PF_SET command sets the X mask and the

Y mask of the mask setting in the pass/fail

option.

The response to the PF_ SET? query indicates

the value of the X mask and the Y mask.

COMMAND SYNTAX PF_ SET XMASK, <div>, YMASK, <div>

 $< \overline{div}> := 0.04 div \sim 4.0 div$

QUERY SYNTAX PF_ SET?

RESPONSE FORMAT PF SET XMASK, <div>, YMASK, <div>

EXAMPLE The following instruction sets the X mask to

0.4div and the Y mask to 0.5div of the mask

setting in the pass/fail option:

Command message:

PFST XMASK, 0.4, YMASK, 0.5

RELATED COMMANDS PFSL PFST

SAVE/RECALL

PF_SAVELOAD, PFSL

Command

DESCRIPTION The PF_SAVELOAD command saves or recalls

the created mask setting.

COMMAND SYNTAX PF SAVELOAD LOCATION,

<location>, ACTION, <action>

The <location> means to save the created mask setting to the internal memories or the external

memories.

 $< location > : = {IN,EX}$

IN means to save the mask setting to the internal memories while EX means the external

memories.

<action> := {SAVE,LOAD}

SAVE means to save the mask setting while LOAD means recall the stored mask setting.

EXAMPLE The following instruction saves the mask

setting to the internal memories:

Command message:

PFSL LOCATION, IN, ACTION, SAVE

RELATED COMMANDS PECM

PF_CONTROL, PFCT

Command /Query

DESCRIPTION

The PF_CONTROL command controls the pass/fail controlling options: "operate", "output" and the "stop on output".

See instrument's Operator Manual for these options

The response to the PF_ CONTROL? query indicates the controlling options of the pass/fail.

COMMAND SYNTAX

PF CONTROL

TRACE, <trace>, CONTROL, <control>, OUTP

UT,<output>,OUTPUTSTOP,<state>
<trace> := {C1,C2,C3,C4}
<control> := {START,STOP}

<output> : = {FAIL,PASS}
<state> : = {ON,OFF}

QUERY SYNTAX

PF CONTROL?

RESPONSE FORMAT

PF_ CONTROL

TRACE, <trace>, CONTROL, <control>,
OUTPUT, <output>, OUTPUTSTOP, <state>

EXAMPLE

The following instruction sets source to channel 1, "operate" to "start", "output" to "pass" and

"stop on output" to "off":

Command message:

PFCT TRACE,C1,CONTROL,START, OUTPUT,PASS,OUTPUTSTOP,OFF

PF_CREATEM, PFCM

Command

DESCRIPTION The PF_CREATEM command creates the mask

of the pass/fail.

COMMAND SYNTAX PF CREATEM

EXAMPLE The following instruction creates the mask of

the pass/fail.:

Command message:

PFCM

RELATED COMMANDS PFSL PFST

DESCRIPTION

PF_DATADIS, PFDD
Query

The PF_DATADIS? query returns the number

of the fail ,pass and total number that the screen

showing.

QUERY SYNTAX

PF DATADIS?

RESPONSE FORMAT

PF_ DATADIS

FAIL,<num>,PASS,<num>,total,<num>

EXAMPLE

The following instruction returns the number of the message display of the pass/fail:

Command message:

PFDD FAIL,0,PASS,0,TOTAL,0

RELATED COMMANDS

PACL

*RCL

Command

DESCRIPTION

The *RCL command sets the state of the instrument, using one of the ten non-volatile panel setups, by recalling the complete frontpanel setup of the instrument. Panel setup 0 corresponds to the default panel setup.

The *RCL command produces the opposite effect of the *SAV command.

If the desired panel setup is not acceptable, the EXecution error status Register (EXR) is set and the EXE bit of the standard Event Status

Register (ESR) is set.

COMMAND SYNTAX

*RCL <panel_setup> <panel_setup>:= 0 to 20

EXAMPLE

The following recalls the instrument setup previously stored in panel setup 3:

Command message:

*RCL 3

RELATED COMMANDS

PANEL SETUP, *SAV, EXR

RECALL_PANEL, RCPN

Command

DESCRIPTION

The RECALL_PANEL command recalls a front-panel setup from the current directory on mass storage.

COMMAND SYNTAX

ReCall PaNel DISK, <device>, FILE,

'<filename>'

<device> : = {UDSK}

<fi>filename>: = A waveform file under a legal DOS path . A filename-string of up to eight characters, with the extension ".SET". (This can include the '/' character to define the root directors).

directory.)

EXAMPLE

The following recalls the front-panel setup from file SEAN. SET in a USB memory device:

Command message:

RCPN DISK, UDSK, FILE, 'SEAN. SET'

RELATED COMMANDS

PANEL SETUP, *SAV, STORE PANEL,

*RCL

*RST

Command

DESCRIPTION The *RST command initiates a device reset.

The *RST sets recalls the default setup.

COMMAND SYNTAX *RST

EXAMPLE This example resets the oscilloscope:

Command message:

*RST

RELATED COMMANDS *CAL, *RCL

REF_SET, REFS

Command /Query

DESCRIPTION

The REF_SET command sets the reference waveform and its options.

The response to the REF_SET? query indicates whether the specified reference waveform is turned on.

COMMAND SYNTAX

REF _ SET TRACE,<trace>REF,<ref>,state,

<state>,SAVE,DO

<trace> : = {C1,C2,C3,C4,MATH}

 $\langle ref \rangle := \{RA,RB,RC,RD\}$

The Rx(x is A,B,C,D) is that which one can be stored or displayed

 $\langle \text{state} \rangle := \{ON, OFF\}$

The state enables or disables to display the

specified reference waveform.

If the command syntax have the option that SAVE,DO, means that the specified trace will be saved to the specified reference waveform.

QUERY SYNTAX

REF SET? REF, < ref>

RESPONSE FORMAT

REF SET REF, < ref >, STATE, < state >

EXAMPLE

The following instruction saves the channel 1 waveform to the REFA, and turns on REFA:

Command message:

REFS TRACE,C1,REF,RA, STATE,ON,SAVE,DO

*SAV

Command

DESCRIPTION The *SAV command stores the current state of

the instrument in internal memory. The *SAV command stores the complete front-panel setup of the instrument at the time the

command is issued.

<panel_setup>: = 1 to 20

EXAMPLE The following saves the current instrument

setup in Panel Setup 3:

Command message:

*SAV 3

RELATED COMMANDS PANEL SETUP, *RCL

HARD COPY

SCREEN_DUMP, SCDP

Command

DESCRIPTION The SCREEN_DUMP command is used to

obtain the screen information of image format.

COMMAND SYNTAX SCreen_DumP

EXAMPLEThe following command transfers the screen information of image format to the controller

Command message:

SCDP

DISPLAY

SCREEN_SAVE, SCSV

Command /Query

DESCRIPTION

The SCREEN_SAVE command controls the automatic Screen Saver, which automatically shuts down the internal color monitor after a preset time.

The response to the SCREEN_SAVE? query indicates whether the automatic screen saver feature is on or off

Note: When the screen save is in effect, the oscilloscope is still fully functional.

COMMAND SYNTAX

SCreen_SaVe <enabled> <enabled> : = {YES, NO}

QUERY SYNTAX

SCreen SaVe?

RESPONSE FORMAT

SCreen_SaVe <enabled>

EXAMPLE

The following enables the automatic screen saver:

Command message:

SCSV YES

STATUS *SRE

Command /Query

DESCRIPTION

The *SRE command sets the Service Request Enable register (SRE). This command allows the user to specify which summary message bit(s) in the STB register will generate a service request.

A summary message bit is enabled by writing a '1' into the corresponding bit location.
Conversely, writing a '0' into a given bit location prevents the associated event from generating a service request (SRQ). Clearing the SRE register disables SRQ interrupts.

The *SRE? query returns a value that, when converted to a binary number, represents the bit settings of the SRE register.

Note: that bit 6 (MSS) cannot be set and its returned value is always zero.

COMMAND SYNTAX

*SRE <value> <value> : = 0 to 255

QUERY SYNTAX

*SRE?

RESPONSE FORMAT

*SRE <value>

EXAMPLE

The following instruction allows an SRQ to be generated as soon as the MAV summary bit (bit 4, i.e. decimal 16) or the INB summary bit (bit 0, i.e. decimal 1) in the STB register, or both, are set. Summing these two values yields the SRE mask 16+1 = 17.

Command message:

*SRE 17

STATUS *STB?
Query

DESCRIPTION The *STB? query reads the contents of the

488.1 defined status register (STB), and the Master Summary Status (MSS). The response represents the values of bits 0 to 5 and 7 of the Status Byte register and the MSS summary

message.

The response to a *STB? Query is identical to the response of a serial poll except that the MSS summary message appears in bit 6 in place of

the RQS message.

QUERY SYNTAX *STB?

RESPONSE FORMAT *STB <value>

<value> : = 0 to 255

EXAMPLE The following reads the status byte register:

Command message:

*STB?

Response message:

*STB 0

RELATED COMMANDS ALL STATUS, *CLS, *SRE

ADDITIONAL INFORMATION

Status Byte Register (STB)				
Bit	Bit Value	Bit Name	Description	Note
7	128	DIO7	0 reserved for future use	
6	64	MSS/RQS	at least 1 bit in STB masked by SRE is 1	(1)
		MSS=1	service is	(2)
		RQS=1	requested	
5	32	ESB	1 an ESR enabled event has occurred	(3)
4	16	MAV	1 output queue is not empty	(4)
3	8	DIO3	0 reserved	
2	4	VAB	1 a command data value has been adapted	(5)
1	2	DIO1	0 reserved	
0	1	INB	1 an enabled INternal state change has	(6)
			occurred	

Notes

- (1) The Master Summary Status (MSS) indicates that the instrument requests service, whilst the Service Request status when set specifies that the oscilloscope issued a service request. Bit position 6 depends on the polling method:
 - Bit 6 = MSS if an *STB? Query is received
 - = ROS if serial polling is conducted
- (2) Example: If SRE=10 and STB=10 then MSS=1. If SRE=010 and STB=100 then MSS=0.
- (3) The Event Status Bit (ESB) indicates whether or not one or more of the enabled IEEE 488.2 events have occurred since the last reading or clearing of the Standard Event Status Register (ESR). ESB is set if an enabled event becomes true (1).
- (4) The Message AVailable bit (MAV) indicates whether or not the Output queue is empty. The MAV summary bit is set true (1) whenever a data byte resides in the Output queue.
- (5) The Value Adapted Bit (VAB) is set true (1) whenever a data value in a command has been adapted to the nearest legal value. For instance, the VAB bit would be set if the timebase is redefined as 2 μs/div since the adapted value is 2.5 μs/div.
- (6) The INternal state Bit (INB) is set true (1) whenever certain enabled internal states are entered. For further information, refer to the INR query.

ACQUISITION STOP

DESCRIPTION The STOP command immediately stops the

acquisition of a signal. If the trigger mode is

AUTO or NORM.

COMMAND SYNTAX STOP

EXAMPLE The following stops the acquisition process:

Command message:

STOP

RELATED COMMANDS ARM ACQUISITION, TRIG MODE, WAIT

WAVEFORM TRANSFER

STORE, STO

Command

DESCRIPTION

The STORE command stores the contents of the specified trace into the current directory in a

USB memory device.

COMMAND SYNTAX STOre <trace>

<trace>: = {TA, TB, TC, TD, C1, C2, C3, C4,ALL DISPLAYED}

 $< dest>: = {UDSK}$

Note: If the STORE command is sent without any argument, and the current trace isn't enabled, the current trace will be enabled and stored in the Store Setup. This setup can be modified using the STORE SETUP

command

EXAMPLE The following command stores the contents of

Channel 1(C1) into USB memory device:

Command message: STO C1, UDSK

The following command stores all currently displayed waveforms onto the USB memory

device:

Command message:

STO ALL DISPLAYED, UDSK

RELATED COMMANDS STORE SETUP, RECALL

STORE_PANEL, STPN

Command

DESCRIPTION

The STORE PANEL command stores the complete front-panel setup of the instrument, at the time the command is issued, into a file on the specified-DOS path directory in a USB memory device.

COMMAND SYNTAX

STore PaNel DISK, <device>, FILE, '<filename>'

<device>: ={UDSK}

< directory >: = A legal DOS path or filename. A filename -string of up to 8 characters, with the extension ".SET". (This can include the '/' character to define the root directory.)

EXAMPLE

The following code saves the current instrument setup to root directory of the USB memory device in a file called "SEAN SET":

Command message:

STore PaNel DISK, UDSK, FILE, 'SEAN. SET'

The following code saves the current instrument setup to specified-directory of the USB memory device in a file called "SEAN.SET":

Command message:

STore PaNel DISK, UDSK, FILE, '/AAA/SEAN'

RELATED COMMANDS

*SAV, RECALL PANEL, *RCL

WAVEFORM TRANSFER

STORE_SETUP, STST

Command /Query

DESCRIPTION The STORE_SETUP command controls the way

in which traces will be stored. A single trace or all displayed traces may be enabled for storage.

COMMAND SYNTAX STore_SeTup [<trace>, <dest>]

<trace> : = {C1,C2,C3,C4,ALL DISPLAYED}

 $< dest>: = \{ UDSK \}$

QUERY SYNTAX STore_SeTup?

RESPONSE FORMATSTore SeTup <trace>, <dest>

EXAMPLE The following command selects Channel 1 to be

stored.

Command message: STST C1, UDSK

RELATED COMMANDS STORE, INR

SAMPLE_STATUS, SAST

Query

DESCRIPTION The SAST? query the acquisition status of the

scope.

QUERY SYNTAX SAST?

RESPONSE FORMAT SAST < status >

EXAMPLE The following command reads the acquisition

status of the scope.

Command message:

SAST?

Response message:

SAST trig'd

SAMPLE_RATE, SARA

Query

DESCRIPTION The SARA? query returns the sample rate of the

scope.

QUERY SYNTAX SARA?

RESPONSE FORMAT SARA <value>

EXAMPLE The following command reads the sample rate of

the scope.

Command message:

SARA?

Response message: SARA 500.0kSa

SAMPLE_NUM, SANU

Query

DESCRIPTION The SANU? query returns the number of

sampled points available from last acquisition

and the trigger position.

QUERY SYNTAX SANU? <channel>

RESPONSE FORMAT SANU < value>

EXAMPLE The following command reads the number of

sampled points available from last acquisition

from the Channel 2.

Command message:

SANU? C2

Response message:

SANU 6000

SKEW, SKEW

Command

DESCRIPTION The SKEW command sets the skew value of the

specified trace.

The response to the SKEW? query indicates the

skew value of the specified trace.

<trace> : = {C1,C2,C3,C4}

<skew>: = it is a value about time.

QUERY SYNTAX <trace>:SKEW?

RESPONSE FORMAT <trace>:SKEW <skew>

EXAMPLE The following command sets channel 1 skew

value to 3ns

Command message: C1:SKEW 3NS

SINXX_SAMPLE, SXSA

Command /Query

DESCRIPTION The SINXX_SAMPLE command sets the way

of interpolation.

The response to the SINXX_SAMPLE? query

indicates the way of interpolation.

COMMAND SYNTAX SINXX_SAMPLE, <state>

<state> : = {ON,OFF}

ON means sine interpolation, and OFF means

linear interpolation

QUERY SYNTAX SINXX SAMPLE?

RESPONSE FORMAT SINXX_SAMPLE <state>

EXAMPLE The following instruction sets the way of the

interpolation to sine interpolation:

Command message:

SXSA ON

TIME_DIV, TDIV

Command /Query

DESCRIPTION The TIME DIV command modifies the

timebase setting. The new timebase setting may be specified with suffixes: NS for nanoseconds, US for microseconds, MS for milliseconds, S for seconds, or KS for kiloseconds. An out-of-range value causes the VAB bit (bit 2) in the

STB register to be set.

The TIME_DIV? query returns the current

timebase setting.

COMMAND SYNTAX Time DIV <value>

<value>:={1NS,2NS,5NS,10NS,20NS,50NS,10
0NS,200NS,500NS,1US,2US,5US,10US,20US,
50US,100US,200US,500US,1MS,2MS,5MS,10
MS,20MS,50MS,100MS,200MS,500MS,1S,2S

5S,10S,20S,50S}

QUERY SYNTAX Time_DIV?

RESPONSE FORMAT Time DIV <value>

EXAMPLE The following sets the time base to 500 μs /div:

Command message: TDIV 500US

RELATED COMMANDS TRIG DELAY, TRIG MODE

WAVEFORM TRANSFER

TEMPLATE, TMPL

Query

DESCRIPTION The TEMPLATE? query produces a copy of the

template that describes the various logical entities making up a complete waveform. In particular, the template describes in full detail the variables contained in the descriptor part of a waveform

a wavelollii

QUERY SYNTAX TeMPLate?

RESPONSE FORMAT TeMPLate "<template>"

<template> : = A variable length string detailing

the structure of a waveform.

RELATED COMMANDS WF

DISPLAY TRACE, TRA

DESCRIPTION The TRACE command enables or disables the

display of a trace. An environment error is set if an attempt is made to display more than four

waveforms.

The TRACE? query indicates whether the

specified trace is displayed or not.

COMMAND SYNTAX <trace>: TRAce <mode>

 $\langle \text{trace} \rangle := \{C1, C2, C3, C4, TA, TB, TC, TD\}$

<mode> : = {ON, OFF}

QUERY SYNTAX <trace>: TRAce?

EXAMPLE The following command displays Channel 1 (C1):

Command message: C1: TRA ON

*TRG

Command

DESCRIPTION The *TRG command executes an ARM

command.

COMMAND SYNTAX *TRG

EXAMPLE The following command enables signal

acquisition:

Command message:

*TRG

RELATED COMMANDS ARM ACQUISITION, STOP, WAIT

TRIG_COUPLING, TRCP

Command /Query

DESCRIPTION The TRIG_COUPLING command sets the

coupling mode of the specified trigger source.

The TRIG_COUPLING? query returns the

trigger coupling of the selected source.

COMMAND SYNTAX trig_source: TRig_CouPling trig_coupling

<trig_source>: = {C1, C2, C3, C4, EX, EX5,

LINE}

<trig coupling>: = {AC,DC,HFREJ,LFREJ}

QUERY SYNTAX <trig source>: TRig CouPling?

RESPONSE FORMAT trig_source: TRig_CouPling trig_coupling

EXAMPLE The following command sets the coupling mode

of the trigger source Channel 2 to AC:

Command message: C2: TRCP AC

RELATED COMMANDS TRIG COUPLING, TRIG DELAY,

TRIG LEVEL, TRIG MODE, TRIG SELECT,

TRIG SLOPE

TRIG_DELAY, TRDL

Command /Query

DESCRIPTION

The TRIG_DELAY command sets the time at which the trigger is to occur with respect to the first acquired data point.

This mode is called pre-trigger acquisition, as data are acquired before the trigger occurs. Negative trigger delays must be given in seconds. This mode is called post-trigger acquisition, as the data are acquired after the trigger has occurred.

If a value outside the range, the trigger time will be set to the nearest limit and the VAB bit (bit 2) will be set in the STB register. The response to the TRIG_DELAY? query indicates the trigger time with respect to the first acquired data point.

COMMAND SYNTAX

TRig_DeLay <value>

<value>: = the range of value is related to the

timebase.

Note: The suffix S is optional and assumed.

QUERY SYNTAX

TRig DeLay?

RESPONSE FORMAT

TRig DeLay <value>

EXAMPLE

The following command sets the trigger delay to

-2ms (posttrigger):

Command message:

TRDL -2MS

RELATED COMMANDS

TIME_DIV, TRIG_COUPLING, TRIG_LEVEL, TRIG MODE, TRIG_SELECT, TRIG_SLOPE

RELATED COMMANDS

TRIG_LEVEL, TRLV

Command /Query

DESCRIPTION The TRIG LEVEL command adjusts the trigger

level of the specified trigger source. An out-ofrange value will be adjusted to the closest legal value and will cause the VAB bit (bit 2) in the

STB register to be set.

The TRIG LEVEL? query returns the current

trigger level.

<trig_source>: = {C1, C2, C3, C4, EX, EX5} <trig_level>: = -4.5DIV* volt/div to 4.5DIV *

volt/div

Note: The suffix V is optional and assumed.

QUERY SYNTAX <trig_source>: TRig_LeVel?

RESPONSE FORMAT <a href="mailt

EXAMPLE The following code adjusts the trigger level of

Channel 3 to 52.00my:

Command message:

C3:TRig_LeVel 52.00mv

TRIG_COUPLING, TRIG_DELAY,
TRIG MODE. TRIG SELECT. TRIG SLOPE

TRIG_LEVEL2, TRLV2

Command /Query

DESCRIPTION The TRIG_LEVEL command adjusts the second

trigger

level of the specified trigger source. If want to use this command. The trigger type must have two trigger lines. An out-of-range value will be adjusted to the closest legal value and will cause the VAB bit (bit 2) in the STB register to be set.

The TRIG_LEVEL? query returns the current

trigger level.

COMMAND SYNTAX <trig_source>: TRig_LeVel2 <trig_level>

<trig_source>: = {C1, C2, C3, C4, EX, EX5} <trig_level>: = -4.5DIV* volt/div to 4.5DIV *

volt/div

Note: The suffix V is optional and assumed.

QUERY SYNTAX <trig_source>: TRig_LeVel2?

RESPONSE FORMAT <trig source>: TRig LeVel <trig level>

EXAMPLE The following code adjusts the trigger level of

Channel 3 to 52.00my:

Command message: C3:TRig LeVel 52.00mv

RELATED COMMANDS TRIG COUPLING, TRIG DELAY,

TRIG MODE, TRIG SELECT, TRIG SLOPE

TRIG_MODE, TRMD

Command /Query

DESCRIPTION The TRIG_MODE command specifies the trigger

mode.

The TRIG_MODE? query returns the current

trigger mode.

NOTE: STOP is a part of the option of this command, but is not a trigger mode of the

instrument

COMMAND SYNTAX TRig MoDe <mode>

<mode>: = {AUTO, NORM, SINGLE,STOP}

QUERY SYNTAX TRig_MoDe?

RESPONSE FORMAT TRig MoDe <mode>

EXAMPLE The following selects the normal mode:

Command message: TRMD NORM

RELATED COMMANDS ARM ACQUISITION, STOP, TRIG SELECT,

TRIG_COUPLING, TRIG_LEVEL, TRIG_SLOP

TRIG SELECT, TRSE

Command /Query

DESCRIPTION

The TRIG_SELECT command selects the condition that will trigger the acquisition of waveforms. Depending on the trigger type, additional parameters must be specified. These additional parameters are grouped in pairs. The first in the pair names the variable to be modified, while the second gives the new value to be assigned. Pairs may be given in any order and restricted to those variables to be changed.

The TRIG_SELECT? query returns the current trigger condition.

Trigger Notation				
EDGE	Edge	PS	Pulse smaller	
GLIT	Glitch	SR	Source	
HV	Hold value	TI	Time	
HT	Hold type	TV	TV	
IL	Interval larger	CHAR	Characteristics	
INTV	Interval	LPIC	Lines per picture	
IS	Interval smaller	LINE	Line	
PL	Pulse larger			

NOTE: The command is unclear and needs more explanation.

COMMAND SYNTAX

For all but TV Trigger TRig SElect

IL,I2,OFF,EV}

<hold_value> : = See instrument Operator's

Manual for valid values

QUERY SYNTAX

TRig SElect?

RESPONSE FORMAT

TRig_Select <trig_type>, SR, <source>, HT, <hold type>, HV, <hold value>

EXAMPLE

The following selects the EDGE trigger with Channel 1 as trigger source. Hold type and hold-value are chosen as "time" and 1.43US:

Command message:

TRSE EDGE, SR, C1, HT, TI, HV, 1.43US

TV COMMAND SYNTAX

TRig_SElect TV, SR, <source>,

FLDC,<field_count>,FLD,<field>,CHAR,

<characteristics>,

IPIC, <ipic>, ILAC, <ilace>, LINE, <line>

<trig type>: = $\{TV\}$

 $\langle \text{source} \rangle := \{C1, C2, C3, C4\}$

<field_count>: = {1,2,4,8}

<field>:=1 to field_count

<characteristics> : = {NTSC,
}

PALSEC,720P/50,720P/60,1080P/50,1080P/60,1080I/50,1080I/60,CUSTOM}

<lpic>:=1 to 1500
<ilace>:= {1,2,4,8}

< = 1 to 525 (PALSEC) 1 to 625(NTSC)

QUERY SYNTAX RESPONSE FORMAT

TRig SElect?

TRig_SElect TV, SR, <source>, CHAR, <characteristic>, LINE, line>

EXAMPLE

The following sets up the trigger system to trigger on the line 17, of the PAL/SECAM TV signal applied to the external input.

Command message:

TRSE TV, SR, EX, CHAR, PALSEC, LINE, 17

RELATED COMMANDS

TRIG_COUPLING, TRIG_DELAY,
TRIG_LEVEL, TRIG_MODE, TRIG_SLOPE

TRIG_SLOPE, TRSL

Command /Query

DESCRIPTION The TRIG_SLOPE command sets the trigger

slope of the specified trigger source.

The TRIG SLOPE? query returns the trigger

slope of the selected source.

COMMAND SYNTAX <trig_source>: TRig_SLope <trig_slope>

<trig_source>: = {C1, C2, C3, C4, EX,EX5 } <trig_slope>: = {NEG, POS,WINDOW}

RESPONSE FORMAT <trig source>: TRig SLope <trig slope>

EXAMPLE The following sets the trigger slope of Channel 2

to negative:

Command message: C2: TRSL NEG

RELATED COMMANDS TRIG_COUPLING, TRIG_DELAY,

TRIG LEVEL, TRIG MODE, TRIG SELECT,

TRIG SLOPE

TRIG_WINDOW, TRWI

Command /Query

DESCRIPTION The TRIG WINDOW command sets the

relative height of the two trigger line of the

trigger window type.

The TRIG_WINDOW? query returns relative

height of the two trigger line of the trigger

window type.

COMMAND SYNTAX TRig WIndow <value>

< value >: -4.5DIV* volt/div to 4.5DIV * volt/div

QUERY SYNTAX TRig WIndow?

RESPONSE FORMAT TRig WIndow < value >

EXAMPLE The following sets the relative height of the two

trigger line of the trigger window type to 2V:

Command message:

TRWI 2V

RELATED COMMANDS TRIG_LEVEL, TRIG_LEVEL2, TRIG_SELECT

TRIG_PATTERN, TRPA

Command /Query

DESCRIPTION The TRIG PATTERN command sets the

condition of the pattern trigger.

The TRIG PATTERN? query returns the

condition of the pattern trigger.

COMMAND SYNTAX TRig PAttern <source>, <status>

[,<source>,<status>][,<source>,

<status>],STATE,<condition>

< source >: ={C1, C2, C3, C4}

 $\leq \text{status} = \{X, L, H\}$

< condition >:= {AND, OR, NAND, OR}

QUERY SYNTAX TRig_PAttern?

RESPONSE FORMAT TRig Pattern

<source>,<status>,<source>,<status>,<source>,<status>,<source>,<status>

EXAMPLE The following sets the channel 2 and channel 3 to

low and the condition to AND:

Command message:

TRPA C2,L,C3,L,STATE,AND

RELATED COMMANDS TRIG LEVEL, TRIG LEVEL2, TRIG SELECT

UNIT, UNIT

Command /Query

DESCRIPTION The UNIT command sets the unit of the specified

trace.

The UNIT query returns the unit of the specified

trace.

COMMAND SYNTAX <channel>: UNIT <type>

<channel>: = {C1, C2, C3, C4}

 $\langle type \rangle := \{V,A\}$

QUERY SYNTAX <channel>: UNIT?

RESPONSE FORMAT <channel>: UNIT <type>

EXAMPLE The following command sets the unit of the

channel 1 to V:

Command message:

C1: UNIT V

DISPLAY

VERT_POSITION, VPOS

Command /Query

DESCRIPTION The VERT_POSITION command adjusts the

vertical position of the specified FFT trace on the screen. It does not affect the original offset value

obtained at acquisition time.

The VERT_POSITION? query returns the current

vertical position of the specified FFT trace.

COMMAND SYNTAX <trace>: Vert POSITION <display offset>

<trace>: = $\{TA, TB, TC, TD\}$

<display offset>: =-40 DIV to 40 DIV

Note: The suffix DIV is optional.

QUERY SYNTAX <trace>: Vert POSition?

RESPONSE FORMAT <a hre

EXAMPLEThe following shifts FFT Trace A (TA) upwards by +3 divisions relative to the position at the time

of acquisition:

Command message: TA: VPOS 3DIV

VOLT_DIV, VDIV

Command /Query

DESCRIPTION The VOLT_DIV command sets the vertical

sensitivity in Volts/div. The VAB bit (bit 2) in the STB register is set if an out-of-range value is

entered.

The VOLT_DIV query returns the vertical

sensitivity of the specified channel.

COMMAND SYNTAX <channel>: Volt DIV <v gain>

<channel>: = {C1, C2, C3, C4} <v_gain>: = 2mV to 10V Note: The suffix V is optional.

QUERY SYNTAX <channel>: Volt DIV?

RESPONSE FORMAT <channel>: Volt DIV <v gain>

EXAMPLE The following command sets the vertical

sensitivity of channel 1 to 50 mV/div:

Command message: C1: VDIV 50MV

WAVEFORM TRANSFER

WAVEFORM, WF Query

DESCRIPTION

A WAVEFORM? Query transfers a waveform from the oscilloscope to the controller.

A waveform consists of several distinct entities:

- 1. the descriptor (DESC)
- 2. the auxiliary data (DAT1) block 3. the main data (DAT2) block

The WAVEFORM? Query instructs the oscilloscope to transmit a waveform to the controller. The entities may be queried independently. If the "ALL" parameter is specified, all four or five entities are transmitted in one block in the order enumerated above

Note:1. The format of the waveform data depends on the current settings specified by the last WAVEFORM_SETUP command.

2. The format of the waveform data can be seen by the TEMPLATE? Query.

QUERY SYNTAX

<trace>: WaveForm? <trace> : = { C1,C2,C3,C4}

RESPONSE FORMAT

<trace>: WaveForm <waveform data block>

EXAMPLE

The following command reads waveform data block of Channel 2:

Command message:

C2: WF?

RELATED COMMANDS

WAVEFORM SETUP

WAVEFORM TRANSFER

WAVEFORM_SETUP, WFSU

Command /Query

DESCRIPTION

The WAVEFORM_SETUP command specifies the amount of data in a waveform to be transmitted to the controller. The command controls the settings of the parameters listed below

Notation					
FP	first point	NP	number of points		
SP	sparsing				

Sparsing (SP): The sparsing parameter defines the interval between data points. For example:

SP = 0 sends all data points

SP = 1 sends all data points

SP = 4 sends every 4th data point

Number of points (NP): The number of points parameter indicates how many points should be transmitted. For example:

NP = 0 sends all data points

NP = 1 sends 1 data point

NP = 50 sends a maximum of 50 data points

NP = 1001 sends a maximum of 1001 data points

First point (FP): The first point parameter specifies the address of the first data point to be sent. For waveforms acquired in sequence mode, this refers to the relative address in the given segment. For example:

FP = 0 corresponds to the first data point

FP = 1 corresponds to the second data point

FP = 5000 corresponds to data point 5001

The WAVEFORM_SETUP? query returns the transfer parameters currently in use.

COMMAND SYNTAX

WaveForm_SetUp SP, <sparsing>, NP, <number>, FP, <point>

QUERY SYNTAX

WaveForm SetUp?

Note 1: After power-on, SP is set to 4, NP is set to 1000, and FP is set to 0.

Note 2: Parameters are grouped in pairs. The first of the pair names the variable to be modified, whilst the second gives the new value to be assigned. Pairs may be given in any order and may be restricted to those variables to be changed.

RESPONSE FORMAT WaveForm_SetUp SP, <sparsing>, NP,

<number>, FP, <point>

EXAMPLE The following command specifies that every 3rd

data point (SP=3) starting at address 200 should

be transferred:

Command message: WFSU SP, 3, FP, 200

RELATED COMMANDS WAVEFORM

WAIT, WAIT

DESCRIPTION

The WAIT command prevents the instrument from analyzing new commands until the oscilloscope has completed the current acquisition.

The instrument will be waiting for trigger or the limit time over (if we set it) or the device time out when we sent this command

COMMAND SYNTAX

WAIT <time>

Note: This command have two ways to use. One sets the limited time, another one doesn't set the limited time.

EXAMPLE

If we move the trigger level of the source to the position where the trace isn't triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The instrument will be waiting for triggering until the time over (if we set it) or time out.

If we move the trigger level of the source, and the instrument is triggered. Then we send an ARM command to set the trigger mode to single. Finally we send the WAIT command. The WAIT command will be finished if we send a FRTR for triggering.

Command message:

WAIT

DISPLAY

XY_DISPLAY, XYDS

Command /Query

DESCRIPTION The XY_DISPLAY command enables or disables

to display the XY format

The response to the XY_DISPLAY? query indicates whether the XY format display is

enabled.

COMMAND SYNTAX XY_DISPLAY <state>

<state>: = {ON, OFF}

QUERY SYNTAX XY DISPLAY?

RESPONSE FORMAT XY DISPLAY <state>

EXAMPLE The following command enables to display the

XY format:

Command message:

XYDS

Index

Α

ALL_STATUS?, ALST?, Query,
ARM_ACQUISITION, ARM, Command,
ATTENUATION, ATTN, Command/Query,
AUTO_CALIBRATE, ACAL, Command/Query,
AUTO_SETUP, ASET, Command,
AUTO_TYPESET, AUTTS, Command/Query,
AVERAGE ACOUIRE, AVGA, Command/Ouery,

В

BANDWIDTH_LIMIT, BWL,Command/Query, BUZZER, BUZZ, Command,

C

CAL?, Query,
CLS, Command,
CMR?, Query,
COMM_NET, CONET, Command/Query,
COUPLING, CPL, Command/Query,
CURSOR_SET, CRST, Command/Query,
CURSOR_VALUE?, CRVA?, Query,
CURSOR_AUTO, CRAU, Command,
CSV_SAVE, CSVS, Command/Query,
COUNTER, COUN, Command/Query,
CYMOMETER, CYMT, Ouery,

D

DATE, Command/Query,
DDR?, Query,
DEFINE, DEF, Command/Query,
DELETE_FILE, DELF, Command,
DIRECTORY, DIR, Command/Query,
DOT JOIN, DTJN, Command/Query,

E

ESE, Command/Query, ESR?, Query, EXR?, Query,

```
F
FILENAME, FLNM, Command/Query,
FORMAT VDISK, FVDISK, Query,
FILTER, FILT, Command/Query,
FILT SET, FILTS, Command/Query,
FFT WINDOW, FFTW, Command/Query,
FFT ZOOM, FFTZ, Command/Query,
FFT SCALE, FFTS, Command/Query,
FFT FULLSCREEN, FFTF, Command/Ouerv,
G
GRID DISPLAY, GRDS, Command/Query,
GCSV, GET CSV, Query,
Η
HARDCOPY SETUP, HCSU,
HOR MAGNIFY, HMAG, Command/Query,
HOR POSITION, HPOS, Command/Query,
I
IDN?, Query,
INTENSITY, INTS.Command/Ouerv.
INTERLEAVED, ILVD, Command/Query,
INR. INR. Ouerv.
INVERT SET, INVS, Command/Query,
L
LOCK, Command/Query,
M
MENU, MENU, Command/Query,
MATH VERT POS, MTVP, Command/Query,
MATH VERT DIV, MTVD, Command/Query,
MEASURE DELY, MEAD, Command/Query,
0
OFFSET, OFST, Command/Ouerv,
OPC, Command/Query,
P
```

PARAMETER CLR, PACL, Command,

PARAMETER CUSTOM, PACU, Command/Ouerv. PARAMETER VALUE?, PAVA?, Query, PEAK DETECT, PDET, Command/Ouery. PERSIST, PERS, Command/Query, PERSIST SETUP, PESU, Command/Query, PANEL SETUP, PNSU, Command/Query, PF DISPLAY, PFDS, Command/Query, PF SET, PFST, Command/Query, PF SAVELOAD, PFSL, Command, PF CONTROL, PFCT, Command/Query, PF CREATEM, PFCM, Command, PF DATEDIS, PFDD, Query,

R

RCL, Command, RECALL, REC, Command, RECALL PANEL, RCPN, Command, RST. Command. REF SET, REFS, Command/Query,

S

SAV. Command. SCREEN DUMP, SCDP, Command/Query, SRE, Command/Ouerv. STB? Query, STOP, Command. STORE, STO, Command, STORE PANEL, STPN, Command, STORE SETUP, STST, Command/Query, SAMPLE STATUS, SAST/ Query, SAMPLE RATE, SARA/ Query, SAMPLE NUM. SANU/ Ouerv. SKEW, SKEW, Command. SETTO%50, SET50, Command. SINXX SAMPLE, SXSA, Command/Query,

T

TIME DIV, TDIV, Command/Query, TRACE, TRA, Command/Query, TRG, Command, TRIG COUPLING, TRCP, Command/Query, TRIG DELAY, TRDL, Command/Query, TRIG LEVEL, TRLV, Command/Query, TRIG MODE, TRMD, Command/Query,

TRIG_SELECT, TRSE,Command/Query, TRIG_SLOPE, TRSL,Command/Query,

U

UNIT, UNIT, Command/Query,

V

VOLT_DIV, VDIV, Command/Query, VERTICAL, VTCL, Command/Query,

W

WAIT, Command, WAVEFORM, WF, Command/Query, WAVEFORM SETUP, WFSU, Command/Query,

Χ

XY_DISPLAY, XYDS, Command/Query,