SIGLENT TECHNOLOGIES

Every Bench. Every Engineer. Every Day.

ccuracy and Range Extended

SSG6000A

RF signal generator

- ► Frequency up to 40 GHz
- Outstanding phase noise
 < -135 dBc/Hz

Highlights

Excellent Signal Purity

- Excellent SSB phase noise
- Low harmonic signal

.

. . .

- Low nonharmonic signal
- Ultra low broadband noise
- Exceptionally high output level

Exceptional Functionality

- AM Modulation
- Pulse Generator
- Pulse Modulation
- Pulse Train Generator
- Power Meter Control Kit

Exquisite Design

- Remote control
- Compact structure
- User friendly interface
- Large operating screen
- Rich communication interface
- ...

CONTENTS

Basic Info

Features and Benefits

-

~

PART ONE

Brief Introduction

Instrument Tour / User friendly in every detail

SIGLENT's RF Signal Source Technology Roadmap

SSG6000A Series

RF Signal Generator

Models	SSG6083A	SSG6085A	SSG6087A		
Frequency Range	CW MODE 100 kHz-13.6 GHz	CW MODE 100 kHz-40 GHz			
Level setting range	-130 dBm to +24 dBm				
Amplitude Resolution		0.01 dB			
Level Accuracy	≤ 0.7 dB(typ.)				
Phase Noise	-135 dBc/Hz @1 GHz, offset 20 kHz (typ.)				
Display	5 inch capacitance touch screen, RGB (800*480)				

SSG6000A Front Panel Tour

Flexible large screen touch operation

SSG6000A Rear Panel Tour

Multiple control and function extension interfaces

PART TWO

Technical Highlights

Performance parameters and specific advantages of SSG6000A

Features and Benefits

Going into details: make operation more fluent

User Friendly Interface

- 5" touch screen
- Multiple shortcut keys
- Save occupied space and maintain test accuracy
- Simplify measurement setup steps and improve test efficiency

06

Abundant Communication Interfaces

- Support remote web page control
- Support mouse, keyboard, storage and calibration
- More connection and control modes: flexible and practical

03

Ultra High Output Frequency

- Up to 13.6/20/40 GHz
- Suitable to a wider range of fields, such as radar systems and antenna testing
- Perform basic local oscillator up-conversion or continuous wave blocking test

High Performance OCXO

- High stability
- Pure signal and Pure spectrum
- Excellent level accuracy and repeatability

Outstanding SSB Phase Noise

- < -135 dBc/Hz @1 GHz, offset 20 kHz (typ.)
- Improve close-in phase noise
- Very low harmonic signal components over the entire frequency range even at very high output power

Exceptionally High Output Level

- Attenuation in the test device can be easily compensated
- High-sensitivity receive convenient for testing
- Characterization of broadband MW components

Meet The Test Requirements

76	JO KHZ		13.6 GHZ 20 GHZ	40 GHZ
	000A	SSG6083A, 100 kHz ~ 13.6 GHz		
	SSG6	SSG6085A, 100 kHz ~ 20 GHz		
	LENT			
	SIG	SSG6087A, 100 kHz ~ 40 GHz		

- ISM band up to 5.7 GHz
- Blocking characteristics of CW signal up to 12.75 GHz
- Two frequencies up to 20 GHz and up to 40 GHz can cover the microwave frequency range. It is suitable for testing various radar systems in X-band and K-band including testing sensitive broadband receivers

Easy to Navigate & Dependable

- Touch screen, Web Control, and front panel buttons including mouse and keyboard can all be used
- It has high frequency and power stability in the working temperature range of 0~50 °C
- Long term stability is important in aging and lifecycle tests that can last days or weeks.

Frequency	Reference
Temperature stability	±1 ppb, 0°C ~50°C
Frequency aging rate	50 ppb/1 year

Ultra Fast Switching Speed

- Time is money, faster generators shorten the test time and save manufacturing costs
- How fast does a generator change from one frequency/ amplitude/ waveform to another?
- Main Factors: Type of change, source of commands (SCPI, List/Step Sweep mode)
- When it matters: Tests which require fast change of frequency/ amplitude/ waveforms
 - For example, receiver sensitivity measurements and bit-error-rate (BER) measurements, verify amplifier functionality over variable waveforms, amplifier gain compression tests require various power levels

SSG6000A Frequency and Level Setting Time			
Frequency Setting Time	ALC ON <10 ms		
	ALC OFF (S&H) <20 ms		
Frequency Sweep Dwell Time	10 ms~100 s		
Lovel Cotting Time	ALC ON <10 ms		
	ALC OFF (S&H) <20 ms		

Excellent Phase Noise

- Excellent phase noise: < -135 dBc/Hz (typ.) for 1 GHz at an offset of 20 kHz
- Ideal choice for local oscillator and low jitter clock replacement
- Meets the harsh challenges of radar module and system testing with ease
- Conduct blockage and adjacent channel selectivity test of high-performance receivers

SSB Phase Noise

Low Harmonic Signal Components

- Very little wideband noise: < -155 dBc (typ.) at 10 GHz and an offset of 10 MHz
- Very low harmonic signal components over the entire frequency range even at very high output power
- Let you no longer be troubled by interference signals when testing components, systems and OTA

Harmonics		Sub harmo	nics
1 MHz < f ≤ 2 GHz	< -30 dBc	1 MHz < f ≤ 40 GHz	< -80 dBc
2 GHz < f ≤ 4 GHz	< -50 dBc		
4 GHz < f ≤ 20 GHz	< -46 dBc	Non-harmonics	
		1 MHz < f ≤ 4 GHz	< -60 dBc

 $4 \text{ GHz} < f \le 40 \text{ GHz}$

< -50 dBc

Second harmonic versus carrier frequency at level 0 & 10 dBm

Exceptionally High Output Power

- Ideal choice for high sensitivity receiver testing
- Characterization of broadband microwave components, such as filters and amplifiers
- If you need a high-power excitation signal in the test, you can get the required test signal without an external amplifier, with higher power accuracy and better stability

SSG6087A	SSG6083A &
100 kHz ≤ f <3 MHz 8 dBm	100 kHz ≤ f < 3
$3 \text{ MHz} \le f < 4 \text{ GHz}$ 16 dBm	3 MHz ≤ f< 1
$4 \text{ GHz} \le f \le 6 \text{ GHz}$ 12 dBm	1 GHz ≤ f ≤ 2
6 GHz < f ≤ 15 GHz 12 dBm	2 GHz < f ≤ 4
15 GHz < f ≤ 20 GHz 12 dBm	4 GHz < f ≤ 6
20 GHz < f ≤ 40 GHz 12 dBm	6 GHz < f ≤ 18

SSG6083A & SSG	6085A
100 kHz ≤ f < 3 MHz	13 dBm
3 MHz ≤ f< 1 GHz	22 dBm
$1 \text{ GHz} \leq f \leq 2 \text{ GHz}$	20 dBm
2 GHz < f ≤ 4 GHz	18 dBm
4 GHz < f ≤ 6 GHz	15 dBm
6 GHz < f ≤ 18 GHz	17 dBm
18 GHz < f ≤ 20 GHz	14 dBm

Exceptionally High Output Power

Very high output power even in the wide frequency range

No Need To Use External Amplifier

- Microwave frequency range usually requires high output power
- The higher the frequency, the greater the attenuation
- Different output power levels are provided to compensate for such losses

Test the power of SSG6000A with a power sensor

High Absolute Level Accuracy

- A signal generator's absolute level accuracy is just as important as its output power
- Quantitatively characterize the nonlinear performance of an amplifier (1 dB compression point)

Measured level error versus frequency, Level = 10 dBm

High Absolute Level Accuracy

20

Analog & Pulse Modulation

- In addition to continuous wave signals, SSG6000A also provides the most common analog AM modulation mode as a standard configuration
- In addition, SSG6000A is equipped with an excellent pulse signal generator and pulse modulator to generate user-programmable pulses

AM Modulation

- High signal quality and perfect waveform reproduction
- Modulation source:
 internal, external, internal + external

AM State AM Shape Sine AM Source Int
AM Shape AM Source Sine ~ Int ~
AM Depth
AM Rate 1.000 00 kHz
AM PULSE

Pulse Modulation (SSG6080A-PU)

- Support double pulse modulation
- Less pulse width loss and extremely low overshoot probability
 - At 6GHz, the pulse width of 100ns is missing 6ns, and there is no overshoot
 - Above 6GHz, no pulse width loss, no overshoot

Pulse Modulation			
Modulation source	Internal, External		
Pulse modes	Single pulse, Double pulse		
On/off ration	> 80 dBc (typ.)		
Rise/fall time (10% / 90%)	< 15 ns (typ.)		
Pulse repetition time	40 ns - 300 s		

Double Pulse Modulation

Less Pulse Width Loss

Pulse Generator (SSG6080A-PU)

- Output 100 ns pulse, the pulse widths obtained are the same
- Controlled by external pulse signal, or use single/ double pulse/ pulse train as modulation signal

LOCAL RF LF MOD			율
200.0	00 000 00	MHZ	0.00 dBm
Pulse State		Pulse Out	
Pulse Source	Int ~	Pulse Out Polarity	Normal ~
Pulse Mode	Single		l
Pulse Period	200 ns	Pulse Width	100 ns
С AM	PULSE		

Pulse Train Generator (SSG6080A-PT)

- This produces a very long custom pulse train
- It can generate staggered pulse groups or jitter pulse widths and pulse pauses
- The pulse width and the pulse pause can be set independently and separately for each pulse

Pulse Train			
Number of pulses	1 - 2047		
Number of repetitions per pulse	1 - 65535		
Pulse on time and off time setting range	20 ns - 300 s		
Pulse on time and off time setting resolution	10 ns		

Schematic Diagram

Pulse Train

PART THREE

Market and Application

Capabilities and Functional Highlights

Power Control

Obtain highly accurate and stable input power

Power Compensation

- Cable Loss
- Attenuation of passive network
- Signal amplification by power amplifier
- The frequency response of each device in the link
- ...
- The power sensor detects the power received by the DUT
- The signal source adjusts and compensates the output signal

Power Control

Obtain highly accurate and stable input power

- Short frequency and level stabilization time
- Excellent level accuracy and repeatability to ensure high yield
- No matter what kind of power offset occurs, closed-loop power control can ensure that the tested equipment can obtain highly accurate and stable input power

LO in Up/Down Converter Measurement

Clean CW Source for Testing Transceivers

Pure LO is important for testing IF up/down converters

Especially when using high-order complex modulation formats

- Signal purity of the generator
- Low harmonics and spurs
- Low integrated phase noise over the signal bandwidth of interest
- •

. . .

Radar System Measurement

Extremely low phase noise

.

...

Used as pulse modulation signal source or LO

- The phase noise of signal generator determines the minimum reflected signal that radar can detect
- Extremely low phase noise means that the system performance will not be masked by phase noise of signal generator

Radar System Measurement

Simulate various radar echo signals

٠

...

Pulse generator simulates various radar echo signals

- One to four target signals returned from different distances
- Signals returned from moving targets approaching or leaving

Nonlinear Measurement

Adequately high output power, low harmonics, sub harmonics, and non-harmonics

Typical nonlinear measurements of RF active devices, modules and tr		Iyp	lical nonlinea	r measurement		active	devices,	, modules and	transceivers
---	--	-----	----------------	---------------	--	--------	----------	---------------	--------------

- Manufacturers of devices, such as amplifiers and mixers, measure and specify P1 dB compression point and IP2/IP3 intermodulation
- In-band and out-of-band interference (C/I, blocking) are another class of nonlinear measurements made on all types of receivers

			0

For accurate nonlinear measurement, the harmonics and spurs should be as low as possible

Harmonics				
1 MHz < f ≤ 2 GHz	< -30 dBc			
2 GHz < f ≤ 4 GHz	< -50 dBc			
4 GHz < f ≤ 20 GHz	< -46 dBc			

Sub harmonics			
1 MHz < f ≤ 40 GHz	< -80 dBc		

Non-harmonics				
1 MHz < f ≤ 4 GHz	< -60 dBc			
4 GHz < f ≤ 40 GHz	< -50 dBc			

ADC Measurement

Low phase noise, harmonics, sub harmonics, and non-harmonics

- Typical ADC measurements include SNR, SFDR and ENOB
- As signal source/clock source

The key performance parameters of ADC measurement:

- Harmonics and spurs in clock and signal paths
- Integrated phase noise /RMS jitter in clock and signal paths
- ...

DAC Measurement

Low phase noise, harmonics, sub harmonics, and non-harmonics

- Typical DAC measurements include SNR, SFDR and ENOB
- As signal source

The key performance parameters of DAC measurement:

- Harmonics and spurs in clock and signal paths
- Integrated phase noise /RMS jitter in clock and signal paths

DSO Measurement

Low phase noise, harmonics, sub harmonics, and non-harmonics

- Typical DSO measurements include SNR and ENOB at various input frequencies up to 10 GHz and different vertical scale settings
- As signal source

The key performance parameters of DSO measurement:

- Harmonic and subharmonic in the whole input frequency range of DSO
- Integrate phase noise and spurs in the whole input frequency range of DSO
- •

...

Receiver Blocking Test

Adequately high output power, low harmonics, sub harmonics, and non-harmonics

- When a small, wanted signal is received along with a large interfering signal at input of the receiver, the interfering signal desensitizes the front-end subsystem
- Blocking tests are intended to measure receiver's ability to receive, demodulate and decode successfully wanted signals in presence of large interfering signals
- Several communication standards specify blocking test for receivers in their conformance test specifi cations
 - 5G NR Base Station Conformance test specifi cation TS 38.141-1
 - EN 300 328 for equipment operating in 2.4 GHz ISM band which applies to Bluetooth and Wi-Fi

۲

. . .

A Generic Receiver Blocking Test Setup

Parametric Test

Receiver Test

Excitation and LOHigh Power DeviceSubstitutionTest

Parametric Test

- In order to fully characterize RF components, you need to understand and simulate the performance of input signals and output signals
- Use for testing and performance evaluation of various electronic devices and systems, simplifying test challenges including sensitivity, dynamic range and intermodulation distortion

High Power Device Test

No need for external amplifier to overcome the loss of test system with higher accuracy and better stability

Receiver Test

Characterize the receiver in various test scenarios:

- Radiation test or conduction test
- Minimum or maximum input level
- Interference, blocking, intermodulation and fading

Test of frequency range, sensitivity, dynamic range, intermodulation distortion and other indicators

Excitation and LO Substitution

- High output power & CW signal purity
- Can be used for signal excitation of precision amplifiers
- Can be used as an ideal local oscillator to replace the local oscillator in high performance transmitters and receivers

PART FOUR

Comparison

Comparison of similar products

Para/Model	SIGLENT SSG6000A	KEYSIGHT N5183B	KEYSIGHT N5173B	R&S SMB100A	R&S SMA100B	Anritsu MG362x1A
Appearance						
Frequency Range	100 kHz-13.6/20/40 GHz	9 kHz-13/20/31.8/40 GHz	9 kHz-13/20/31.8/40 GHz	100 kHz-12.75/20 /31.8/40 GHz	8 kHz-3/6/12.75/20 /31.8/40/50/67 GHz	9 kHz-20/43.5/70 GHz
Level Setting Range	-130 dBm to +24 dBm	-135 dBm to 30 dBm (with Option 1E1 and 1EA) -20 dBm to 19 dBm (without 1E1 and 1EA)	-135 dBm to 30 dBm (with Option 1E1 and 1EA) -20 dBm to 19 dBm (without 1E1 and 1EA)	–145 dBm to 3 dB above max	–145 dBm to +16 dBm	
Level Resolution	0.01 dB	0.01 dB	0.01 dB	0.01 dB	0.01 dB	0.01 dB
/laximum output power	22 dBm	+18 dBm (Standard) +23 dBm (Option 1EA)	+18 dBm (Standard) +23 dBm (Option 1EA)	18 dBm	19 dBm	21 dBm
- ull amplitude accuracy	< 0.7 dB	± 0.6 dB	± 0.6 dB	< 0.5 dB	< 0.7 dB	
Phase Noise@1GHz (20 kHz offset)	-135 dBc/Hz (typ.)	-130 dBc/Hz (spec.)	-118 dBc/Hz (spec.)	10 kHz offset -128 dBc/Hz (typ.)	-140 dBc/Hz (typ.)	-10 kHz offset -138 dBc/Hz (typ.)
Harmonic (1MHz <f<2ghz)< td=""><td>< -30 dBc</td><td>< –48 dBc, 9 kHz to 200 MHz < –33 dBc,200 MHz to 2 GHz</td><td>< –48 dBc, 9 kHz to 200 MHz < –33 dBc,200 MHz to 2 GHz</td><td>< -30 dBc</td><td>< -30 dBc</td><td> –35dBc, 9 kHz to ≤ 31.25 MHz –58dBc,31.2MHz to ≤ 1.3 GHz </td></f<2ghz)<>	< -30 dBc	< –48 dBc, 9 kHz to 200 MHz < –33 dBc,200 MHz to 2 GHz	< –48 dBc, 9 kHz to 200 MHz < –33 dBc,200 MHz to 2 GHz	< -30 dBc	< -30 dBc	 –35dBc, 9 kHz to ≤ 31.25 MHz –58dBc,31.2MHz to ≤ 1.3 GHz
Sub Harmonics	< -80 dBc	< -75 dBc, >1.5 to 3.2 GHz < -67 dBc, >3.2 to 10 GHz < -56 dBc, >10 to 20 GHz < -53 dBc, >20 to 40 GHz	< -75 dBc, >1.5 to 3.2 GHz < -67 dBc, >3.2 to 10 GHz < -56 dBc, >10 to 20 GHz < -53 dBc, >20 to 40 GHz	None, < 6.375 GHz < –55 dBc, 6.375 to 20 GHz < –50 dBc, 20 to 40 GHz	< −85 dBc, ≤ 5 GHz < −60 dBc, > 5 GHz	
AM Modulation	Standard	Option UNT	Option UNT	Standard	SMAB-K720 option	Option 12

Para/Model	SIGLENT SSG6000A	KEYSIGHT N5183B	KEYSIGHT N5173B	R&S SMB100A	R&S SMA100B	Anritsu MG362x1A
Appearance						
Sweep Modes	Frequency step, Arbitrary list	Frequency step, Arbitrary list	Frequency step, Arbitrary list			Frequency step, Arbitrary list
Number Of Points	Step sweep: 2-65535 List sweep: 1-500	Step sweep: 2-65535 List sweep: 1-3201	Step sweep: 2-65535 List sweep: 1-3201			2 to 65535
Step Attenuator	0 to 110 dB, 10dB step	(Option 1E1) 0 to 115 dB, 10 dB step	(Option 1E1) 0 to 115 dB, 10 dB step	Option	Option	Option 2, 10 dB step 110 dB on models 43.5 GHz
Pulse Modulation	SSG6080A-PU	Option UNW or UW2	Option UNW or UW2	SMB-K21	SMAB-K22	Option 26
Pulse On/Off Ration	>80 dB	>80 dB	>80 dB	>80 dB	>80 dB	>80 dB
Pulse Generator	SSG6080A-PU	Option UNW or UW2	Option UNW or UW2	SMB-K23	SMAB-K23	Option 27
Pulse Train Generator	SSG6080A-PT	Option UNW or UW2	Option UNW or UW2	SMB-K27	SMAB-K27	
Number Of Pulses	1-2047	1-2047	1-2047	1-2047	1-2047	
Pulse On Time And Off Time Setting Range	20 ns to 300 s	20ns to 42s	20ns to 42s	10 ns to 5 ms	5 ns	
ОСХО	Standard	Standard	Standard	Option	Option	Standard/ Option3/ Option56
RF Output	2.92mm male	Option 513/520: 3.5 male, Option 532/540 plus 2.4-2.4 mm and 2.4	or Type-N with Option 1ED;): 2.4 mm male; -2.9 mm female adapters	B112/B120: 3.5 mm female B131/B140: 2.92 mm female	B103/-B106: N female B112/-B120/B131/B140: 2.92 mm female	20.0 GHz: 2.92 mm K(m) 43.5 GHz: 2.92 mm K(m) 70 GHz: 1.85 mm V(m)

SSG5000A versus SSG6000A

Frequency offset = 20 GHz phase noise

Keys For Accuracy

01

02

Impedance Matching

- The output impedance of SSG6000A is 50Ω, and impedance mismatch will lead to signal amplitude reduction and high voltage standing wave ratio
- When SSG6000A is used in 75 Ω , an impedance matching attenuator should be added for matching

Periodic Calibration

The output frequency accuracy of SSG6000A will change with time, so it is recommended to recalibrate it annually

Keys For Accuracy

03

04

Time Base Preheating

SSG6000A uses the high-stability crystal oscillator as the time reference, and the instrument must be preheated for a period of time, so that the high-stability crystal oscillator can reach its predetermined technical index before use, and the output can meet the specified stability and accuracy index

High-power Reverse Irrigation

It is easy to burn the internal microwave circuit when the large signal is input back, and it is also easy to burn the internal microwave circuit when the DC voltage is input, so special attention should be paid when the output is connected to the external power amplifier

Ordering Information

Product Description	SSG6000A Signal Generator	Order Number		
	Analog Signal Generator 100 kHz~13.6 GHz	SSG6083A		
Product Code	Analog Signal Generator 100 kHz~20 GHz	SSG6085A		
	Analog Signal Generator 100 kHz~40 GHz	SSG6087A		
Standard Configurations	Quick start, USB cable, Calibration certificate, Power cord, 2.92mm female to female adapter			
	Pulse modulation	SSG6080A-PU		
Option	Pulse train generator	SSG6080A-PT		
	Rack mount kit	SSG6000A-RMK		
	USB-GPIB adapter	USB-GPIB		
	Upgrade 13.6 GHz to 20 GHz	SSG6080A-F85		

Thank You

Every Bench. Every Engineer. Every Day.

Headquarters

SIGLENT TECHNOLOGIES CO., LTD. Add: Blog No.1 & No.4 & No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China Tel:+ 86 755 3688 7876 Fax:+ 86 755 3359 1582 sales@siglent.com int.siglent.com

NA

SIGLENT Technologies NA, Inc. Add: 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800 Toll Free:877-515-5551 Fax: 440-399-1211 info@siglent.com www.siglentna.com

Europe

SIGLENT TECHNOLOGIES GERMANY GmbH Add: Staetzlinger Str. 70 86165 Augsburg, Germany Tel: +49(0)-821-666 0 111 0 Fax: +49(0)-821-666 0 111 22 info-eu@siglent.com www.siglenteu.com