Application Note: Antenna characterization at the push of a button

Introduction 1.

This application note explains how the Tekbox Vector Network Analyzer TBVNA-6000 enables you to measure antenna return loss, VSWR, antenna gain and the antenna factor with the push of a button.

You may just wish to characterize an antenna during development or ensure that a third-party antenna performs as expected when mounted on a housing. A critical performance criterium for ISM band radio transmitters is the power that it radiates from the antenna. The radiated RF power must be high enough to achieve a reliable link between the transmitter and receiver, yet it must not be so high that it exceeds the radiation limits established in Part 15.231 of the FCC Regulations and similar standards. To determine the effective isotropic radiated power, you need to multiply the RF power at the antenna connector with the isotropic gain of the antenna.

One of the methods to measure antenna gain is the "Two antenna method". This approach measures the path loss between two identical antennas, set up at a far-field distance with respect to each other.

The path loss is measured using a Vector Network Analyzer. S21 data is normally downloaded from the analyzer and copied into an Excel sheet to calculate gain. This time-consuming procedure can be simplified to the push of a button thanks to the features of the TBVNA-6000 Vector Network Analyzer from Tekbox.

2. Two antenna method

Two identical antennas are set up at a distance r. Coupling loss can be measured by connecting one antenna to Port 1 and the other antenna to port 2 of a VNA.

Picture 1, 2-antenna method setup

For aligned identical antennas, the Friis transmission equation gives:

Equation 1:

 $Gain[dB] = \frac{1}{2} [20 \log(\frac{4\pi r}{1}) + S21]$

Equation 2:

Antenna Factor $[dB/m] = 20 \log \left(\frac{9.73}{\lambda \sqrt{G(num)}}\right)$ with $G(num) = 10^{\left(\frac{Gain[dB]}{10}\right)}$

3. VNA setup

In order to get maximum information with our setup, we will configure the TBVNA-6000 to measure antenna return loss S11, VSWR, path loss S21, gain and antenna factor at the push of a button.

In our example, we want to measure the characteristics of a 900 MHz ISM antenna. We will set the start frequency to 1 MHz, stop frequency to 2 GHz, linear sweep, 201 measurement points and the port power to -5 dBm:

Application Note: Antenna characterization at the push of a button

Picture 2, stimulus setup

Setup the analyzer for a full 2-port calibration. The coaxial cables used must be the same ones used to connect the antennas. The reference planes for calibration are at the open end of the coaxial cables.

Picture 3, OSLT calibration setup

Press the CALIBRATION-button to carry out a 2-port OSLT calibration. For detailed information on the calibration procedure, read chapter 2 of the TBVNA-6000 getting-started manual. Save the calibration as *Antenna_Gain.xcf*

Press the DIAGRAM-Button to set up the measurement plots. Use the ADD DIAGRAM-button to set up five rectangular diagrams. Use the RENAME-button to name the diagrams *Path Loss, VSWR, Antenna Return loss, Gain* and *Antenna Factor*.

Diagram List	Diagram	Trace List	Trace
Path Loss	Add Diagram		Add
VSWR			
Antenna Return Loss			
Antenna Factor	Rect. Diagram		Delete
	O Polar Diagram		
	Delete Diagram		Edit
			8
	Rename		Renam
	_		
	is visible		
			Quit
			Qu

Picture 4, Diagram utility

V1.0

TEKBOX

Assign measurements to the diagrams. Highlight the *Path Loss* diagram and press the ADD TRACE-button. In the Trace dialog, select *S21* and press the ADD-button.

Path Loss		Add Diagram			
				Add	
Dialog					- 0
Fourtes	Trace Exection		Display Function	Normalize by	Axis
S-Param Menory 1 Memory 2 Memory 3 Memory 4 Aperture[%]	(S11) S-Parameter (S12) S-Parameter (S22) S-Parameter (S22) S-Parameter (S22) S-Parameter (Zout: Port 2 impedance (Zout: Port 2 impedance (VSWR_in> VSWR on port 1 (VSWR_out) VSWR on port 2 (Grs- matched voltage gain for	orward	 Magnitude Phase Magnitude in dB Real Imaginary Complex	None S-Param Menory 1 Memory 2 Memory 3 Memory 4	Left Right So Zo Optional Value So Use Correction Setun Corr
0.125			 Delay (-dphi/dw) loaded Q 	Edit Limits	Create Corr.

Picture 5, Trace dialog, S21 selected

Highlight the VSWR diagram and press the ADD TRACE-button. In the Trace dialog, select VSWR on Port1, click Display Function Magnitude and press the ADD-button.

Path Loss VSWR	Add Diagram		Add	
Dialog	Loss			- 0
Source	Trace Function	Display Function	Normalize by	Axis
 S-Param Menory 1 Memory 2 Memory 3 Memory 4 	<s11> S-Parameter <s12> S-Parameter <s21> S-Parameter <s22> S-Parameter <zin> Port 1 impedance <zout> Port 2 impedance <vswr, un=""> VSWR on port 1 <vswr, un=""> VSWR on port 2</vswr,></vswr,></zout></zin></s22></s21></s12></s11>	Magnitude Magnitude Magnitude in dB Real Imaginary Complex	None S-Param Menory 1 Memory 2 Memory 3	Ceft Right S0 Zo Optional Value S0 Use Correction
Aperture[%]	<gvf> matched voltage gain forward</gvf>		O Memory 4	Cable Car
0.00125	<gvr> matched voltage gain reverse</gvr>	O Delay (-dphi/dw) O loaded Q	Edit Limits	Create Corr.

Picture 6, Trace dialog, VSWR Port 1 selected

Highlight the *Antenna return Loss* diagram and press the ADD TRACE-button. In the Trace dialog, select *S11* and press the ADD-button.

Path Loss VSWR Antenna Return	Loss	Add Diagram		Add	
Dialog					- 0
ource	Trace Function		Display Function	Normalize by	Axis
S-Param	<s11> S-Parameter <s12> S-Parameter</s12></s11>		O Magnitude	None	 Left Right
Menory 1 Memory 2	<s21> S-Parameter <s22> S-Parameter</s22></s21>		Magnitude in dB	S-Param	50 Zo
Memory 3 Memory 4	<zout> Port 1 impedance <zout> Port 2 impedance <vswr_in> VSWR on port 1</vswr_in></zout></zout>		Imaginary	O Menory 1 Memory 2	50
Aperture[%]	<vswr_out> VSWR on port 2 <gvf> matched voltage gain forw</gvf></vswr_out>	ard	Complex	O Memory 3 Memory 4	Use Correction
0.125	<gvr> matched voltage gain rever</gvr>	rse	O Delay (-dphi/dw loaded Q) Edit Limits	Setup Corr. Create Corr.

Picture 7, Trace dialog, S11 selected

Application Note: Antenna characterization at the push of a button

To implement the Gain measurement, we use the Equation feature. Highlight the *Gain* diagram and press the ADD TRACE-button. In the Trace dialog, activate the EQUATION - box and enter Equation 1 from chapter 2:

0.5*(20*log(4*PI*VAR_A) + 20*log(Freq) -20*log(299792458)+ dB20(S.S21))

For the antenna spacing r, we make use of variable VAR_A, instead of entering the value directly into the equation. This allows easy modification of the antenna spacing value. Enter a value of 0.5 for 50 cm. After entering the equation, press the ADD Trace-button.

Path Loss VSWR Antenna Return	Loss	Add Diagram		Add	
Gain Antenna Factor		Rect. Diagram		Delete	
Dialog					- 0
Source	Trace Function		Display Function	Normalize by	Axis
S-Param	<s11> S-Parameter <s12> S-Parameter</s12></s11>		O Magnitude	 None 	C Right
 Menory 1 Memory 2 	<s21> S-Parameter <s22> S-Parameter</s22></s21>		Magnitude in dB	○ S-Param	50 Zo
 Memory 3 Memory 4 	<zout> Port 1 impedance <zout> Port 2 impedance <vswr in=""> VSWR on port 1</vswr></zout></zout>		Imaginary	O Menory 1 Memory 2	50
Aperture[%]	<vswr_out> VSWR on port 2 <gvf> matched voltage gain</gvf></vswr_out>	forward	Complex	O Memory 3 Memory 4	Use Correction
0.125	<gvr> matched voltage gain</gvr>	reverse	O Delay (-dphi/dw loaded Q) Edit Limits	Create Corr

Picture 8, Trace dialog, Gain equation

To implement the Antenna Factor measurement, we use the Equation feature. Highlight the *Antenna Factor* diagram and press the ADD TRACE-button. In the Trace dialog, activate the EQUATION - box and enter Equation 2 from chapter 2:

db20((9.73*FREQ)/(300000000*SQRT(10^(0.05*(dB20(3.8*Freq/299792458)+ dB20(S.S21))))))

Path Loss VSWR Antenna Return Loss Gain		Add Diagram	Add Diagram		bh Add	
Antenna Factor O Rect. Diagram				Delete		
Dialog						- 0
Source	Trace Function			Display Function	Normalize by	Axis
O S-Param	Trace Function <s11> S-Parameter <s12> S-Parameter</s12></s11>			O Magnitude	O None	C Left
Menory 1 Memory 2	<s21> S-Parameter <s22> S-Parameter</s22></s21>		1	 Magnitude in dB Real 	⊖ S-Param	50 Zo
O Memory 3	<zin> Port 1 impedance Zout> Port 2 impedance</zin>			O Imaginary	O Menory 1	Optional Value 50
C Prendry 4				Complex	O Memory 2	Use Correctio
Aperture[%] <gvf> matched voltage gain forward 0.125 <gvr> matched voltage gain reverse</gvr></gvf>				O Delay (-dphi/dw)	O memory 4	Setup Corr.
0.125				O loaded Q	Edit Limits	Create Corr

Picture 9, Trace dialog, Antenna factor equation

Quit the diagram utility and open the Gain Plot window. Double click the Y-axis unit and enter dBi.

Picture 10, Gain Plot, entering Y-axis unit

V1.0

TEKBOX

Open the Antenna Factor plot window and enter dB/m as Y-axis unit. Arrange the windows to fit your monitor.

Picture 11, Plot window arrangement

Save the configuration to a setup file, such as 2_Antenna_Measurement_500M_1500M_Lin.suf. When you need to perform another antenna test at a later time, simply load the Setup-file and you're good to go.

All that remains is to set up the antennas and push the measurement button.

Picture 12, Measurement setup

Format the measurement results using diagram utility features such as scaling, markers, labels, and many more.

button

Application Note: Antenna characterization at the push of a

Picture 13, Measurement example

4. Summary

The TBVNA-6000 Vector Network Analyzer provides with its equation editor a powerful tool to customize its measuring capabilities. It eliminates time-consuming postprocessing and contributes to a more efficient design process, reducing time to market.

Version	Date	Author	Changes
V 1.0	27.02.2025	Mayerhofer	Creation of the document