

Handbook
part II

Prog-Studio Software

MC Editor

- General and Surface -
- Assembler Programming -

- Basic Programming -
- The Debugger -

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

2

1. GENERAL INFORMATION 4

1.1 What can the Prog-Studio software do in the MC-Editor mode? 4

1.2 First steps and example programs 4

1.3 The additional windows 5
The additional window MCS-51 instructions 5
The additional window Basic instructions 5
The additional window jumpmarks 6
The additional window notes 6

2. ASSEMBLER PROGRAMMING 7

2.1 General Notes 7

2.2 Commands and basic programming 7

2.3 Number specifications 7
Differentiation between numbers and memory addresses 7
Hexadecimal numbers 8
Decimal numbers 8
Binary numbers 8
ASCII symbols 9
Variables and constants 9

2.4 Comments 9

2.5 Variables and constants (EQU/BIT/DATA) 9

2.6 Jump marks (Label) 10

2.7 Data fields (DB, DW) 11

2.8 Include directions 12

3. BASIC PROGRAMMING 13

3.1 General notes 13

3.2 If Then … End If 13

3.3 If Then … End If for individual bits 14

3.4 For … Next 14

3.5 Mathematical directions 14

4. THE DEBUGGER 15

4.1 Manner of proceeding 15

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

3

4.2 Stop points 16

4.3 Conditional Assembly of certain Areas 16

4.4 The additional windows in the debugging run 17
The additional window Debugger: Control 17
The additional window Debugger: SFR 17
The additional window Debugger: RAM 18
The additional window Debugger: EXRAM 18

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

4

1. General information

1.1 What can the Prog-Studio software do in the MC-Editor
mode?

In the MC-Editor mode, you can develop separate assembler / basic
programs for the microcontroller in the MCS-51 series and test them with
the built-in debugger. If this is not your area of application, you only need to
look at the general directions, and not at this special section of the Prog-
Studio software manual.

1.2 First steps and example programs
First, we would like to recommend that you take a look at the supplied
sample programs. You can find them in the subdirectory \Examples of the
Prog-Studio software. In the file menu, click on „open“ and choose the file
“introdution-1.asm” in the dialogue window.

This introduction which is shown to you here as a first assembler program
already contains a rough overview of the options for assembler programs in
the Prog-Studio software. There are also other introductory components as
well as example programs in this directory.

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

5

1.3 The additional windows
In the View menu, you can have a whole set of additional windows shown.
These can make programming easier for you. Here, we will initially show the
four additional windows which are constantly available. Further down in the
chapter „Debuggers“, you can find the information on another four
additional windows which are only active when the debugger is running.

The additional window MCS-51 instructions
This additional window contains a list of all MCS51 commands. It also
contains the hex code and required bytes / cycles for each command.

You can sort the command list by any
desired criteria. Simply click on the
description in the first (gray) line.

If you are in the Hex-Editor mode and the
window MCS-51 Commands, double
clicking on the byte will mark the
corresponding command in the list.

Fixed number specifications are marked in
the table with #data, memory addresses
with “direct” and the accumulator with A. The registers are marked with Rx.
When using the commands, type in the corresponding values or constants
instead of "data" or "direct", and replace Rx with the desired register (R0-
R7).

The additional window Basic instructions
This additional window gives you a short overview of the available basic
commands. It also contains the information about the required bytes /
cycles for each command.

For the cycles, two numbers are shown.
The first states the required cycles for the
first run of a For-Next loop / the required
cycles for the IF-Then direction, if the
latter is met. The second number stands
for the required cycles for each additional
run of a For-Next loop / the required
cycles of an IF-Then direction, if this is not
met.

You can find further information on
programming with Basic Commands in the corresponding chapter further
below.

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

6

The additional window jumpmarks
In this additional window, you can quickly gain an overview of your program
or move quickly and directly to certain subroutines by clicking on the
corresponding entry. This is very helpful particularly in larger programs,
and you should make use of this function. The entries in this window are
shown as in the text. Indented marks are
shown with indents here as well.

In order to keep an overview in really large
programs as well, you can suppress the
display of less important jump marks. In
the menu Process -> Options, there is the
option of not showing jump marks with a
preceding tab symbol and/or a preceding
underline "_" in the jumpmark window.

When the jumpmark window is activated, you can use a key to show the
first jump mark in the window which starts with the symbol you have
pressed (example: After pressing the "T" key, the first jump mark which
begins with the letter T is shown).

Further information on programming with jump marks can be found in the
corresponding chapter further below.

The additional window notes
You can use this window to enter everything
which seems important to you. The
assembler does not include the entries in an
assembly, but it does save the notes for
each of your programs under the program
name with the ending .not.

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

7

2. Assembler Programming

2.1 General Notes
When you have created a microcontroller program in the MC-Editor window,
the assembler/compiler must transform your directions into the required
hex codes so that the microcontroller or a memory chip can be described
correctly. In order for the assembler to interpret your program correctly, you
must, for instance, mark certain number specifications, state constants and
skip marks, mark comments and data fields etc..

2.2 Commands and basic programming
Unfortunately, we cannot provide you with a comprehensive reference on the
complete extent of the commands or on basic assembler programming, since
it would outgrow the manual. You can find everything which you may want
to know about commands, as well as the construction and use of the MCS-
51 microcontroller, in various literature. Additionally, the extent of the
commands with explanations can be found in a PDF file in the download
area of our website: Batronix.com. The additional window „MCS-51
Commands“ in the Prog-Studio software lists all commands and is suitable
as a quick look-up reference.

We only deal with the special options of the Prog-Studio software here and
refer you to suitable literature for the command set, programming
techniques as well as microcontroller architecture.

2.3 Number specifications
You can add leading zeros to the numbers where desired, or leave them out.
A "0009" is simply interpreted as a "9".

Differentiation between numbers and memory addresses
Number specifications without a preceding number sign (#) are interpreted
by the Prog-Studio software as memory addresses. If you would like to enter
a number instead of a memory address, you must precede it with the
number sign (#). This marking is common with the Intel Mnemonics and is
required here for the basic commands also in order to be able to differentiate
between memory addresses and numbers.

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

8

Hexadecimal numbers
There are three ways in which the assembler can recognize hexadecimal
number specifications. The first method (standard) is to end it with an „h“. It
can also be marked by preceding it with a dollar sign ($). The third method,
of having the numbers interpreted as hexadecimal numbers by marking
them, can be activated in the menu Process -> Options. We not recommend
this, since it does not correspond to the standard and only remains
integrated as a leftover for compatibility with old versions.

Some examples for hexadecimal number specifications are:
MOV A, 3Dh ; Copies the value of the memory address 3D (hex) into the accumulator (A)
MOV A,#3Dh ; Copies the hexadecimal number 3D into the accumulator (A)

MOV A,$3D ;Copies the value of the memory address 3D (hex) into the accumulator (A)
MOV A,#$3D ;Copies the hexadecimal number 3D into the accumulator (A)

Decimal numbers
The assembler also has three options for recognizing decimal number
specifications as such. The first option (standard) is to state decimal
numbers without marking them. However, this only works if the
interpretation of numbers without markings as decimal numbers is
activated in the menu Process -> Options (standard setting). It is also
possible to mark them by ending them with a "d" or a preceding percent
symbol (%).

Some examples of decimal number specifications are:
MOV A,212 ;Writes the value of the memory address 212 into the accumulator A)
MOV A,#212 ;Writes the decimal number 212 into the accumulator (A)

MOV A,212d ;Writes the value of the memory address 212 into the accumulator (A)
MOV A,#212d ;Writes the decimal number 212 into the Accumulator (A)

MOV A,%212 ;Writes the value of the memory address 212 into the accumulator (A)
MOV A,#%212 ;Writes the decimal number 212 into the accumulator (A)

Binary numbers
Binary number specifications can be marked by ending them with a "b"
(standard) or beginning them with an exclamation mark (!).

Some examples of binary number specifications are:
MOV A,10101010b 'Writes the value of the memory address 10101010 (binary) into the

accumulator
MOV A,#10101010b 'Writes the binary number 10101010 into the accumulator

MOV A,!10101010 'Writes the value of the memory address 10101010 (binary) into the

accumulator
MOV A,#!10101010 'Writes the binary number 10101010 into the accumulator

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

9

ASCII symbols
ASCII symbol chains must be placed in parentheses (“).

Some examples of ASCII symbol chains are

MOV A,#"H" ;Writes the ASCII value of the s symbol "H"(=72dec) into the accumulator

DB "a string for your LCD" ;a data field with the ASCII values of the sentence

Variables and constants
You can use all declared variables and constants like numbers. In the
assembly, these are then replaced by the applicable values. Several
commands are available for the declaration of variables and constants . You
can find more information on the declaration of variables and constants in
the respective chapter further below.

Examples:
MOV A,Port1 ;Writes the value of the memory address "Port1" (=90h) into the accumulator(A)
MOV marker,A ;Writes the content of the accumulator's (A) into the address which was defined
with the identification marker.

2.4 Comments
Comments are marked by preceding them with a semicolon (;) or high
comma ('). Since the assembler principally tries to interpret all text as a
command or skip mark, comments must be marked.

After leaving a line with the cursor, comments are colored green for a better
overview.

Examples:
;This line is a comment
MOV A,#10h ;This is a comment

2.5 Variables and constants (EQU/BIT/DATA)
In the MC-Editor window for freely selectable identifications, you can set
values so that these identifications are interpreted during assembly /
compilation and replaced with the respective values. The EQU, the BIT and
the DATA commands are available for this purpose.

If, for instance you have connected the operating LED of your MC switch to
a certain port pin, you can define the term "Operating_LED". If you write
"Operating_LED EQU P1.3" into the MC-Editor, the assembler knows that
it must interpret the identification "Operating_LED" with the bit
specification 93 (=Port 1, Pin 3).

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

10

In the case of each microcontroller, there is a series of fixed descriptions for
certain register addresses, for instance that the above P1.3 stands for Port 1
Pin 3 (=Bit 93). To set the utilized microcontroller and therefore all related
descriptions for the assembler / compiler, this is tied into the MC-Editor
window with the INCLUDE Command. You can find more information on
the INCLUDE Command in one of the following chapters.

You can use the direction BIT to determine that the value of a description is
a bit address. If, after this, for instance, you mistakenly treat the description
INC DESCRIPTION as a byte value, the software warns you of this during
the assembly. The direction DATA behaves similarly, except it declares the
value of the description as a byte.

One example for the use of variables/constants:

INCLUDE 8051.mc ;loads the processor file and determines the register descriptions

Input EQU P3 ;sets the value B0h (Address of P3) for the description Input
EXP_VALUE EQU 125; Sets the value 125 for the description EXP_VALUE

Signal_LED BIT 90h ;'Sets the value 90h for the Description Signal_LED (type = Bit)
Display DATA 90h ;Sets the value 90h for the Description Display (type = Byte)

MOV A,Input ;Copies the content of the address B0h (=Input) into the accumulator (A)
CJNE A,#EXP_WERT,Unequal ;compares the accumulator content with the value EXP_WERT
SETB Signal_LED ;Sets the Bit 90h (=Signal_LED)

Unequal:

2.6 Jump marks (Label)
You can use so-called labels or fixed addresses for your skip marks. The
right address is automatically chosen for the labels during assembly. First,
an example of a label:

Start:

You can now reach this position at any place in the program through, e.g.,
an "LJMP Start" or "LCALL Start". The command, which is directly after or
beside the label is then carried out next. Of course you can use the labels
for other skip commands as well. Fixed skip marks are required in some
places, e.g. where interrupt handling is concerned. This is an example of a
fixed skip address:

(0011h):

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

11

In order to allow the assembler to differentiate between the fixed skip
addresses of the labels, they must be placed in brackets. The command
which is directly after or beside it is now in the place of address 0011h of
the program memory. All skip marks are always ended with a double period.
The same conventions as for commands also apply to fixed skip marks.

After leaving a line with the cursor, skip marks are colored blue for a better
overview.

2.7 Data fields (DB, DW)
There are several types of data fields, of which the „DB“ data fields are used
as the standard. Within these data fields, you may use any desired number
specifications, constants and ASCII symbols. The individual numbers must
be separated by a comma (ASCII symbols are placed in parentheses). Aside
from the DB-Data fields (DB=DataByte), which are used for values of 0-255
(1 byte), you can also use DW-Data fields (DW=DataWord), which are used
for values of 0-65535 (2 bytes).

To allow addressing of the data fields, they are preceded by a variable or
fixed skip mark.

Here are some examples:

'Read the first value from the first variables data field and write this into the
accumulator:
CLR A
MOV DPTR,#Datafield1
MOVC A,@A+DPTR

'Read the first value from the second variable data field and write this into the
accumulator:
CLR A
MOV DPTR,#Datafield2
MOVC A,@A+DPTR

' Read the first value from the data field at address 0700h and write this into
the accumulator:
CLR A
MOV DPTR,#0700h
MOVC A,@A+DPTR

Datafield1:
DB A0h,B7h,30h,02h,FFh,10h
Datafield2:
DB 22,255,12,0,55

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

12

(0700):
DB "Mixed data field...", 20h, 30h, 220, !10101010

DW 20h, 130h, 2220, !1010101010101010

2.8 Include directions
With the aid of the INCLUDE direction, you can tie the contents of a file into
any place in your program. The file to be linked is initially searched for in
the lists of the file which is currently in the MC-Editor, and then in the lists
of \INCLUDE, and last in the list \MC of the Prog-Studio software.

When required you can also state the path of the file to be linked directly.
Name the path in parentheses, for example: INCLUDE
"C:\Windows\Test\TestProz.mc"

All directions are permitted in the files to be linked, therefore you can do
modular programming to the fullest degree. All descriptions which have
been defined once also apply to subsequently linked files, and you can, for
instance, also switch back and forth between routines of the program and
the module with skip commands. In principle, the lines in the file to be
linked replace the Include commands during assembly.

You should make use of the Include direction at the beginning of each of
your programs to set the microcontroller which is to be used. The Prog-
Studio software contains, within the file list \MCa series of so-called
processor files which you can link, for instance, with "Include 8051.mc" . All
register descriptions and the respective register addresses of the respective
microcontrollers are set in these files.

However, please note that the file is tied in at the location at which you
place the Include direction. Therefore you should, for instance, not tie the
file MATH.ASM (in the file list \include within the Prog-Studio software) into
the first few lines of your program, since the routines which it contains
would then also occupy the first program memory addresses. In such a case,
it is recommended to either tie the file in at the end, or tie it in at the
beginning with a preceding, fixed label. Here are a few examples:

INCLUDE 8051.mc

'Your program...

INCLUDE MATH.ASM

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

13

3. Basic Programming

3.1 General notes
In the MC-Editor window, you can also use some basic commands which
the program compiles / changes into the required microcontroller
commands. Depending on the execution of a basic command, a large
number of MC commands may be necessary for this, since the operations
require, for instance, the accumulator register, which must then first be
saved to the stack and restored again afterwards, etc..

The basic commands do not quite correspond to the basic standard, but
were adapted to microcontroller programming. Fixed numbers must be
marked with a preceding number sign (#) , otherwise they will be interpreted
as memory addresses.

The original basic command "FOR A = 1 TO 10" must therefore be written
here as follows: "FOR A = #1 to #10".

You can find a complete list of all basic commands in the additional window
„Basic Commands“.

3.2 If Then … End If
Depending on the execution of the „If Then“ direction, it must be replaced
within the software by other microcontroller commands. For this reason, the
individual variants take differing amounts of time and require different
numbers of bytes within the program memory.

If you want to place several commands after an "If Then" command, you
must place each command in a new line and then end the block with an
"End If" . In this case, you can also use the ELSE command. The use of the
Else command increases the number of the required bytes by 3 bytes, and
the machine cycle number at completion of the condition by 2 cycles. The
ELSE branch is optional.

Here are a few examples:

In a command after „If Then“:
 If A = #122 then INC R7

With several commands between „If Then“ and „End If“:
 If A = #122 then
 SETB P1.1
 Else
 CLR P1.1
 End If

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

14

3.3 If Then … End If for individual bits
To apply the commands to individual bits, there is a special syntax:

For a command after „If Then“:
 If BIT P1.1 then INC R7

For several commands between „If BIT Then“ and „End If“:
 If NOT BIT 0 then
 SETB P1.1
 Else
 CLR P1.1
 End If

3.4 For … Next
Depending on the execution of the „For ... Next“ direction, this must be
replaced in the software by other microcontroller commands. For this
reason, the individual variants take differing amounts of time and require
different numbers of bytes of program memory.

An example of a For ... Next direction:

For A = #112 to #240
 If A = Port3 then
 SETB P1.1
 End If
Next A

3.5 Mathematical directions
Within the MC-Editor window, you can also directly use mathematical
operations, which are calculated immediately during assembly. You can use
the Addition(+), Subtraction(-), Multiplication(*) and Division(/) as well as
the Potency function(^). Here is an example:

Pulse duration data 20h
Pause duration data 30h
Period duration equ Pulse duration + Pause duration

MOV A,#Period duration

Example 2:
Waiting time equ 8h
Mov Port3, Waiting time ^ 2 + 5

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

15

The mathematical operations are processed in the order in which they
occur. The rules of mathematical order do NOT apply. Any desired numbers
and descriptions can be mixed, and the Prog-Studio software warns of
exceeding the areas which are allowed for the respective commands.

Please note that the calculation already takes place during assembly and
not in the microcontroller! The command "MOV A,10+11" does not mean
that the content of Address 10 plus the content of Address 11 is written into
the accumulator, but rather, the content of Address 21 is written into the
accumulator! The command MOV A,10+11 becomes the command MOV
A,21 during assembly.

4. The Debugger

4.1 Manner of proceeding
The integrated debugger in the Prog-Studio software helps you to check your
programs for errors and runtimes and, where required, remove errors and
improve runtimes. Functions such as run-through, individual step and stop
points are available for this purpose, while the RAM and SFR contents
(therefore, for instance, also the conditions for the ports) as well as the
machine cycles and the program address are constantly displayed and
updated in the additional windows.

The debugger is also an excellent aid for beginners who would like to learn
the use and programming of the microcontroller. To see the effect of a
command directly on the monitor is much better than learning it through
reading; and the many beginners’ errors which many of us have made and
probably are still making can be quickly discovered and removed.

Before the debugger can begin to work, it must assemble the program,
arrange the register and RAM addresses, etc. In the menu "Debugger" and
in the toolbar, you will find the entry "prepare debugger data". Clicking on it
will take care of the above named processes, after which the functions of the
debugger are cleared for use (previously, they were deactivated/tuned out).

Clicking on "Start" / "Stop" (in the debugger menu, in the Window Debugger
Control or on the traffic light in the toolbar), you can start or stop the run-
through. One command after the other is carried out until you either click
"Stop" to interrupt the run-through, or the run-through meets the command
"STOP" in the MC-Editor. You can also use the option "Delay process" in the
Debugger Control additional window to delay the process so that it is easier
for you to follow.

Please note: in the current version, the debugger does not yet support the
simulation of the serial ports and not all special SFR additional functions of
special members of the MCS-51 family.

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

16

4.2 Stop points
Clicking on "Start" / "Stop" (in the debugger menu, in the Window Debugger
Control or the traffic light in the toolbar) allows you to start or stop the run-
through. One command after the other is carried out until you either end
the run-through by clicking on "Stop" or the run-through its the command
"STOP" in the MC-Editor.

The "Stop" command can be used in the MC Editor like a "normal"
command. During assembly, it is only applied if the assembly takes place for
a debugging run. It does not need to be removed prior to burning onto a
MC/Eprom.

An example for use:
 '[...]
 INC A
 MOV A,@R0
 IF A > #222 then STOP
 LCALL Anywhere

In the above example, the run-through is only stopped when the condition A
> #222 is fulfilled. However, the Stop command can, of course, be applied
individually as well.

4.3 Conditional Assembly of certain Areas
Areas of the program can be assembled / compiled conditionally depending
on whether the code is being created for the debugger or for the MC. This
expansion enables the routines which are already functioning safely and
have no influence on other routines (e.g. display, pause routines) to be
excluded for the debugging run. In the following example, the lines between
the directions "#IF NOT DEBUGGING" and "#END IF" are only assembled if
the assembly is not taking place for the debugger:
 #IF NOT DEBUGGING
 LCALL Display_refresh
 LCALL Pause routine
 #END IF

In the next example, the lines are only assembled for the debugger:
 #IF DEBUGGING
 LCALL Test_routine
 MOV A,#0
 #END IF

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

17

4.4 The additional windows in the debugging run
In the menu „View,“ you can choose to display a number of additional
windows which will make programming easier for you. Here we introduce
the four additional windows which are only available when the debugger has
been started.

The additional window Debugger: Control
This additional window contains some buttons for guiding the debugger.
You can run the debugger, carry out individual steps, and skip up or down
lines without carrying out the
commands in them.

You can use the reset buttons to reset
the program address, the machine
cycle counter, or the memory.

Through the checkboxes, you can
additionally slow down the debugger
(in order to be better able to follow
certain processes) or speed them up.

The additional window Debugger: SFR
Here you can view the contents of the
Special Functions Register (SFR) of the
microcontroller. In the text fields above
the window, you can directly access/
alter the contents. You can also change
the bits in the field to the respective
opposite condition by double-clicking
on them. The descriptions (names) of
the individual registers are taken out of
the process file. Only those registers
which are present in the selected
microcontroller are shown.

Handbook for the Prog-Studio Software – MC Editor

Prog-Studio Software Handbook – © 1998 - 2004 by Batronix, Owner André Bauer, www.Batronix.com, www.ProgShop.com
This work is protected by German and international copyright. Use in parts or excerpts, duplication, and publishing – including
as excerpts – of any kind require the written permission of the author.

18

The additional window Debugger: RAM
Display of the contents of the integrated RAM in the microcontroller. In the
text fields above the window, you can directly access / alter the contents.
Also, the bits in the field can be changed
to the respective opposite condition by
double-clicking on them. The descriptions
(names) of the individual registers are
taken from the EQU/BYTE directions (if
present). For instance, if you have
declared a variable/constant with the
direction "Pulse time EQU 20h" in the MC-
Editor window, this name is shown in the
RAM at the address 20h. Furthermore, the
register descriptions R0-R7 are shown in
the addresses of the current register bank.

Please note that not every MCS-51
microcontroller has 256 bytes of
integrated RAM; many only have 128
bytes! Since this is not, however, defined
in the processor files, the debugger RAM
window always shows the entire 256 bytes.

The additional window Debugger: EXRAM
This window shows the contents of an external RAM memory which can be
connected to a microcontroller. In the text fields above the window, you can
access the contents directly.

